2= Fermilab

The Enstore Administrator's Guide

November 20, 2019

ABSTRACT

Enstore is the mass storage system implemented at Fermilab as the primary data store for large data
sets. Enstore provides access to data on tape or other storage media both local to a user's machine and
over networks. It is designed to provide high fault tolerance, availability and scalability sufficient for
the current Fermilab and its collaborators needs, as well as easy administration and monitoring. It uses
a client-server architecture which provides a generic interface for users and allows for hardware and
software components that can be replaced and/or expanded. Enstore is currently integrated with dCache
front end which makes up a Hierarchical Data Storage System.

This document describes these tools, how to use them to move data to and from storage media, and
how to monitor the progress of jobs through the system.

January 19, 2010
April 7, 2011
December 21, 2012
March 5, 2013
January 22, 2014
April 15, 2015
January 20, 2016
February 29, 2016
November 20, 2019

Revision Record
First printing.
Updated the migration chapter and fixed typos in the PNFS maintenance chapter.
Modified abstract, added hyperlinks to TOC.
Rewrote the Metadata Scanning chapter.
Added installation chapter.
Changed installation chapter. Postgresql installation part.
Modified installation chapter.
Modified installation chapter.

Modified installation chapter.

Disclaimer

This document and associated documents and programs, and the material and data contained therein,
were developed under the sponsorship of an agency of the United States government, under D.O.E.
Contract Number EY-76-C-02-3000 or revision thereof. Neither the United States Government nor the
Universities Research Association, Inc. nor Fermilab, nor any of their employees, nor their respective
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for accuracy, completeness or usefulness of any information,
apparatus, product or process disclosed, or represents that its use would not infringe privately-owned
rights. Mention of any specific commercial product, process, or service by trade name, trademark,
manufacturer, supplier, or otherwise, shall not, nor is it intended to, imply fitness for any particular use,
or constitute or imply endorsement, recommendation, approval or disapproval by the United States
Government or URA or Fermilab. A royalty-free, non-exclusive right to use and disseminate same for
any purpose whatsoever is expressly reserved to the U.S. and the U.R.A. Any further distribution of
this software or documentation, parts thereof, or other software or documentation based substantially
on this software or parts thereof will acknowledge its source as Fermilab, and include verbatim the
entire contents of this Disclaimer, including this sentence.

Table of Contents

Chapter 1 ENSIOTE O VEIVIEW.uuuvvieeieireeieeeteeeeeeeteeeeeeeeeeeaeesesseeesssesesaaesasesssesaeesesessseseeeeereeasereeaeeseen.seean 9
| 0 0L e 6 10 e o) o FO TR 9
1. 2ENSTOTE ATCIIEECIULE. ... iieeieiieteeee ettt ettt e e e e e ettt e e e eeeeeeaaaa e eseeeeassaannseessnnnenenn 10
1.3Enstore hardware requirements and configuration..............ooooovvviiiiiiiiiiiiii 11

| T 0 5 (T F PP 12
1.3.2AddItIONAL SEOTAZEcoeeiiiieeiiiieeeeeeeeeeee ettt eeeeeeaas 12
1.3 3INEEWOTK SWILCH. ...eeveviiitieieieeteeeeeeeeeteteeeeeteteeeteeeaeaeseeseaaaeaaaeetaeseasaessesessssaessesssssssssssssassssanmnnnseeees 12
1.3.4System CONfIGUIATION.ceviuriiiiiieiiieeeiie ettt ettt e ettt e et e et e e st e e sabeeesibeesabaeeeeesansaeeeas 12

Chapter 2:ENStOre INSTALLAtION.uuuuueeeeiieeiiiieeieeee e et eettite e e et eeettaaaeeeseseeetesaaaaesesesesesssannsesesesesssnneeess 14

2 B G1N5 ke Ye L0Te 5 (o) s UUUURT RO PTTPPRRT 14
A B 0 1 410 (R Lo oy PR 14
P I B (1S 11 11V O OO UTPRTOPPRROPPONt 14
0 R)) 1 1Y (o) (=l o o) 1 | VR 15
2.1.4InStalling ENSIOTE.......cooiiiiiiiiiiiiiieeeeeeeee e 16

2.1.4.1Installing post@reSOL DBIMS.......oouiiiiiiiiiiiiiiieieieeeee ettt eeee e ee e e rereeeeeeeeaaaaaes 16
2.1.4.2Minimal installation (INOVEL NOAE)..........uuuuieiiiiiiiiiiiieee ettt e e et e e e e e eeanns 16
2.1.4.3Complete installation (SEIVEL NOAE).........uuuuuueeiiiiiiiiiiieeeeeeeeeeeeeee e e e et e e e e eeaans 16
2.1.4.4Additional packages for Small Files Aggregation...........ccceevuveerruveeniiieeniiieeniiiieeeesnineeee. 17
2.1.5CONTIGUING ENSTOTE...cevvvieieeeeeeeeiiieeeeeee et ettt e e e e e e eetaaaeeeeeeeeeetsaanearessesannseesansessneeessnnees 17
2.1.5.1Note about .bashrc and .bash Profile.............uuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee e 17
2.1.5.2RUN-tIME ENVITONIMENL.coeiiieiiieieieee e 17

0 IS I 1 5 (ST 1o 15 110 Yo [17
2.1.5.2.2Enstore configuration file..........ccooueeriiiiiiiiiiniiiiiiieeeeee e 18
2.1.5.2.3REGUIAT NOE.ooviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt ettt e e e et e e et e e et e e e e esaaaeeeeeeaes 18

2. 1.5 3FarMIELS....cooiiiiiiiiiiieeeeeeeeeeeeeee e 19

A I A F 1 s TSN N ;L= PR 19
2.1.5.4. TINStALLALION. ..eeevveeeee ettt e ettt e e e e ettt e e e e e eeeaa s e e e eesannaeean 19
2.1.5.4.2NameSPaACE (PNFS) TATSevvveiiiiiiiiiiiiiiiieeiiiiieeeeeeeeeee ettt ettt e et e e e e e eeraaaaeeaeeeeas 21
2.1.6Finishing installation and CONTIGUIAION.uvviieieiieeeeeeeeeeeeteeeeeeeeeeeeeteeeeeeeeeeeenaeeeennneeens 23
2.1.6. 1 ENSLOTE WED SILE.....eeveiiiiiiiiiiiiiiiiiiiteeeeeeeeeeeeeeeee ittt e ettt et ee e et e e e e e e e e s eeseeeeeeeeeeeeeeeeeesaaeeeeesesanans 24
2.1.6.2ENStOTE dAtADASES.eeeeeeii e e e eesnnnns 24
2.1.6.3ENSLOIE CTOMN JODS. . .uuiiiiiiiiieieee ettt ettt e e e e e et e aa e e eseeetesaaanaseseseeesssannnnesees 25
2.1.7Starting, restarting and STOPPING ENSTOTEuuuueereeeeeriireeieeeeeeeertrraeeeeeeeeererraesessnesersnseesnnsees 25
21 8WHRAL NEXE? oo 26

Chapter 3:EnStore COMMIANGS.coeeieieeeeeeeeeeeeeee e ee sesssesessssesasssssseeeesssannnseeeesssnnnesaeees 28
I 3 1T (0 (a0 111 (o TSR 28
RIS (T (o) =l 11 0) w2 o PP 40
IR TS 1T (0 (il 1 1701 11 10) GUUURRER PP PRPRPRPRPPRR 43
R TS T £ il o) 0§ (VP TT T R RPN 44
RIRTS 1 10) ol i (S (6 15) (=T 11T«) PR 50

3.6enstore VOIUME (AEPIECALEA).......cooviieeeeeiie et e ettt e e e e ettt e e e e e e ettt eesba e esaan e esanneeeeas 53

Chapter 4:Enstore Administrator COMMANAS.........eeerueeerireerieeerieeeieeeesieeesieeesseeesreeesseeesssseeessessssseees 58

O S T) (S0 1 - Ve 4 s TP PRPPPR 58
4.2 NSEOTE DACKUD. .. ueeieeiiiiiieee ettt e ettt e e e e e e ettt e e e e e e et taba s eeeeesassanaasssseeessssnnnssesannaees 60
4.3ENStOTE COMIIGUIALION. .. .uueeeeeee s sssssssssnnssseesennnn 60
4.4enStore EVENL TEIAY......coooiiiiiiiiiiiii i, 63
TS 111 10) (= i (=TSO 63
TS T 1) (= 01 Lo TP PRTRTRR 70
4. 7ENSLOTE INQUISILOT......cceeieieiiieieieeeeeee e 74
4.8eNSLOTE LIDTATY.....coooiiiiiiiiiiii e, 79
B 1)1 1 10 (< (0] PP PPPUPRRRRRR 81
4. 10ENSIOTE TMIEAIA. ...ceeiviiiiiiiiiiiiiieeiieeee ettt ettt ettt ee ettt e et e e et e e et et ee e e e e e s e et e e eeeeeeseeeeeaeeeeeeseeeeaeseeseeeesesesaanns 83
4.1 1 ENSEOTE INOMILOT . ..eeivvuueneereeeeetttaeeeeeeeeeetesaaeeeseeeeesssaaaasesesesssssasnssesesesssssanassesssssssssmnnsnesssessnnsees 86
.] 2ENSEOTE INMOVET .. .ueeeeeeiiereieeeeeeeetttateeeeeeeeeeessaaaaeseseesssaanaaseeessssranssssesssssssnnnsssesnnnsessnnnssssannss 87
4.1 3ENSIOTE NMEEWOTKeeiiiiiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt ettt e et e eeeee e et eeeeeeeeeeeseeeeee e e e teseeeesa s eeeesssnnneeeenes 91
A TAENSIOTE PIIES. ... nnes 91
4.156NStOTE PIES AEEIIE. . ..ueeeeeeee e nnn e eeeeernan 100
4TS 1 I (0] (SN0 100] 2 101
4.17eNSLOTE TALEKEEDETccoeeeieiiieeeeeee e, 102
R TS 1R 0] (S (o1 421 o PSR 103
B S I (0] (SEToF: | o WO RPRPUURRRERRNE 103
4.20€NStOTE SCHEAUIE.ueeeeiiiiiiiieeeeee e e ettt e e e e e ettt e e et eeeaanseeeanneeeeans 104
4.2 TENSEOTE SEAT L. uuuueeeeeeeeeriireeeeeeeeeeeetaeeeeeeseeeeetsaaaaeseeeeesssanaasaeeseeesassannassesesesssssannnsesssesesssannnnesees 104
4. 22ENSLOTE SLOD....cceeieeiieeieeeeeeeee e, 105
F AR TS 110 (I A1 1) 0 4 VOO UTUPPPRRRRRRPIR 106
4. 24ENSLOTE UD AOWIL. ...t snnnss 106
TS 1110 (SR £0) 11111 O 107
Chapter 5:Migration and DUPIICATION.uuueeeereeeeieeereereeeeeeeeeeeeereeeeeeeeeeeeeee————————————————————————errrneaee 117
T 1 o6 () 01215 0) 4 OSSR PP 118
I\ T4 216 (o) o OSSP 118
5.2.1Reasons fOr MIGIATION.ccerutteriieeriteeeiteeett e et e et e ettt e sttt e sttt esbteesbteesbeeesabeeesabeeesaneeeeens 118
5.2.2Migration COMMANM.......ccouiiiiiiieiieeeitee ettt e et e st e e sbt e e st e e bt e seateesbteesbeeesbaeesneees 119
5.2.3Migration file family Mangling........coooveiiiiiiiiiiiiiie ettt et e e 6

. B DUPDIICALION. vt eeeeeeeteeeee ettt e e e et e et e e s e e e e et aaaa s eeee et aaaaa e see et aaaaaneseeetaaaa e eaaneerannns 7
5.3.1Reasons for dUpliCAtION.ccooiiiiiiiiiiiiii e 7
5.3.2Duplication COMMAN........ccecuurererireriieeriieeeteeesteeesteeeseaeeessaeessreessaeessseeessssesssseeenssesessseeensssns 7
5.3.3Duplication file family Mangling.........coooueeiiiiiiiiiiiniieiieeeeeeeee e e 9

5. 4ASWAPDING INELAAALA.eeivireeeeeeeeeeeeiiiieeeee et et ettt eeeeeeeeeteaaaeeaeseeetesasanaaseeeeesssnnasesesesesssannnsnesees 10
5.4.1make original S AUPIICALE. DYuuuieiiieiiiiiiiiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeereeeeaeeeeeseseeseean e eesssannanaes 10
5.4.2make migrated aS AUPIICAE. DY .. .uuuuueeeeeiee e e e e e e e e e e e eeeeannans 11

R IR T2) oI o) Fq 10 F:] I V06 BReT0) o) /0 o) 2O 11
@020 o115 a0 X @5 o) 11 (0] o1 TRRERRR U TURRR 14
(ST I TeTeTe Y010 150 0 Ve« Lo YT PP 14
0.1.1dD _ VACUUINLDY...cooiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 14

0. 2DACKUD. ...ttt ettt ettt ettt e a e e h bt e e bt e ettt e e e s e bbb e e e e e e annee 14

6.2.1dDb_DACKUD. DY ACCOUINIINEZ.......eeeiiiiiiiiiiieieeiteeeeeeeeeeeeeteeeeeeeeeeeeeeeseeeseesseeesaseeeesseseseraneeresnnnans 14

6.2.2db_backup.pY driVE SEAL.........cccoeiiiiiiiiiiiiiiiiieieeeeeeeee e 14
[oTR 0T 16 |)00 IF: 1 o= PP 15
(TR 016 0} o)20 I o1 TR 15
6.3.2baCKUPSYSLEM2TADE......ccoeiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee ettt 15
O.ACNECKAD. ..ottt et et ettt ——————————etttaa——————————_ 15
0.4.1CheCK db.DV..cooiiiiiiiiee 15
0. 5CNECKPINES ...ttt bbb e s saaesasassaasssasssasasssssesasssssssssssssessnsssssnsnnssseesesnnnnsnss 15
0.5, 1CHECKPINES ... e e e e e e e e e e e e s e s e s e e s e s s saessaassesseaaaanseeeseesnnnnens 15
0.0CNKCTONIS.coeiiiiiiieieeeeeeeeeeee ettt ettt ee e eaaaaaaes 16
0.0, L KT OIS DY . eeteeeieeeeeteeetee ettt ettt et te et et et e st et e et s st e s st a s s st s s s sssssssasssssssssmsmnmnaneeees 16
O.7CODY _TAN FILE.cceeeeeeieieeieiiieeeeeeee ettt ettt e e e s e e e ettt e e e s e e e s et eaaa e eeseeesesasanaesesesessnannesens 16
0.7.1CODY _TAN TTLE...uiiiiiiiiieee ettt ettt e e e e e ettt e e e e e e e et taaaa e ssseesaansesnnnseenas 16
(SR Ta =3 § 1 (PP PP PPPPPRRT 17
LR 6 1<) 1 1) OSSPSRt 17
OIS Le LU | 1) (o RPN 17
(OIS 6 1 AT T 1) (o TR 17
O.10dIIVESLAL AD...oooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee ettt 18
6.10.1dD_ VACUUIN. DY AITVESLAL.......euueieieiiieieieierireeeteeeeeeeeeeerererereeeseeeeesseaeeeeeeeaaeaeee———a.———————————————————e 18
(X B RS 1R o) (=« Lo YOS RRPRRN 18
6.11.1db_vacuum.pY €NSEOTEAD.uuueieiiiiiiiiiiiee ettt e e e e ettt e e e e eaaeeeanneeeeen 18
(oY IS 1T 0] (ol oF:Te) (L o TP 18
0.12ENSTOTE DU ..eeeeeeeiieeiiiiieeee ettt ettt e e e e et et et e e seeeeetaaaaeseeeeesssaaanseeseesnasesnnesesans 18
6.12.1enstore _SYStemM Nt DY.....ooooiiiiiiiiiiiiii 19
6.12.2make _quota PIOt PAGE.....coooeiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 19
(I PR30 F:1 (e (o) (U o) (0 0 TR 19
6.12.4make _ingest rates html PAZE.DY....ccooeiiiiiiiiiiiiiiiiiieee e 19
0.12.5ENStOTE SYSLEIML.....coeiiiiiiiiiiiieeeeeeeeeee ettt e e e e e e e e e e e e e e e e e e eeeeeeeeeanes 19
6.12.6ENStOTE NELWOTK.....ooiiiiiiiiiiiiiiiiiieeeee et 19
0.12.78€t_tOtAl DYLES COUNLEI. DY ... iiiiiiiiiiieeeeeeeeeeeeeeee e e e ettt e e e e e eeetaaa s eeeseesaaaannseseeesanneeeen 19
(I TS 1R (o) o 0] (o] £ TR 19
(X IR) (0] 47 o) =) 1 o1 o O RRRRRRRRRT 19
(oY IR I 0) (0] 7= 0L A 04101111 | SRS 19
6.13.3plotter MaIN.PY [I0 | ==ITIOUIIE ... e e e e e e e aa s 19
6.13.4plotter MAIN.PY [2T L mTALE ... s s e e e e enenanaaas 19
6.13.5plotter MaIN. PV [~U | —=UIHZATION |...uvveeieeiiiiieieeee ettt ettt e e e eeetaaa e e eaneeesaaneens 20
6.13.6plotter MAIN.DY [=S | mmSLOES et eeeeeeeeeee e ettt e e e e e e et eeeeeeeae e eeeeeeee e e e eeaaaaens 20
0.13.7MAKE ST PIOt....eeeiiiiiiiiiiiieiietiieteteteteteeeteteteeesaeeeateaeeeteaaeasaassaseassasasssssssassssssssssssesnsassansnnnnneeees 20
6.13.8plotter main.py [-€ | ——encp-rate-multi]............ooooviiiiiiiiiiiiii 20
6.13.9plotter main.py [-f | --file-family-analySiS. PV]....ccooeeeieiiieiiieieieieieeeee e 20
6.13.10plotter MaIN.PY [=q | ==QUOLAS.....evveeeiiereieeieeieee ettt et e e e e e e e eaaeeeeaeeeeeeeas 20
6.13.11plotter main.py [-p | —=pnfS-DaCKUPD].....coovvviiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 21
6.13.12plotter.py --total bytes --pts nodes=dOensrv2.stkensrv2.cdfensrv2 —no-plot-html........... 21

6.13.13plotter main.py [-1 | --migration-SUMMALY J.......ceerrureeriuieeriieiniieeriee et eeeeeeiieeeee e e 21

6.13.14weekly SUMMATY TEPOTE. DY ceouveeerereeeireeaireenieeerreeesseeesseesssresensaeesssseesssseeesssssssseessenssssees 21

6.13.15plotter Main.py [t | —-tapeS-DUIN-TALE].....ccee e e e e 21

0. LAINVEITOTYeeeuitieeiiee ettt ettt ettt ettt e ettt e ettt e s bt e e s bt e e s bt e e eabee e sbee s abeesbbeeeasbeeensbeesabaeesabaeeannns 21
0.14. LINVENLOTY . DY oo i 21

(ST IS 0N TS 1110 i A4 o J TR 22
6.15.1CIEANINGZ TEPOIL. .. .teieuiieieiiieeetie ettt ettt ettt e et e ettt e ettt e s bt e e sabeeesabeeesbbeeeeaabbeeeeesennseees 22

0.1 5. 2N 0ACCESS T LAPES. .. e eeeeieeieeeee et et ettt e e e e ettt e e ettt et eetetat——————————tttttaa—————————ottrann—_ 22

0. 15.3V0LS..uuueieiieeeeeieecieeeeee ettt e e e et e et ———t e e e e e e e e e b ———aaaeeeeaarbaraataaeeeeaaaarrrrrrraaes 22
0.15.40U0LA_ALETL......ccooiiiiiiiiiii 22

LT 0 (o 415 o | RS USRRUPSPRR 23
6.16. 1 EINOAEINTO.eiiiiiiiiiiiiiiiiiii ettt ettt ettt et ee ittt eeeeeee e ee e e eeeseeeaes et aes s eaesesaasaesesennns e eesssnnnnnnns 23
6.16.2108 TrANS TAIL.....ooiiiiiieeeeeieeeeiiee ettt ettt ettt e e e e e ettt s e e e e e e et taaa e eseeetaaseeanaaeaas 23

0. 10.3STKIOZ. ...ttt ettt ettt e ettt e s bt e e et e e s bt e e s bt e e sabeeeeabeeesabee e abeeennbeeeaa 23

(ST WA (YY) L= S RTPPPRR 23
(ST A LT 72T o OO RRRRRRTRR 23
6.17.2check fOr tracebaCK.........coooviiiiiiiiiiiiieeeeeeeeeeeeeeeee e 24

0. 17 . 30AISELOZ. .ttt ettt ettt st s bt e st e e e bt e e ebe e e sbeeeeenaa 24

LT] o) 1N ET 11V Y SR PSP USRRPPPRPRR 24
(ST BT 1 511) =54 oY) o TR 24

(SX0 I) 01 1300 1 0701 11110) T TT TR 24

(@) 1121011 A =To) (o) | FUUTTT TRt 26
L LS WILCHIES . ..o ettt ettt e e e e ettt e e e s e e e e e ta s reaeseeee et asaa s eseeesasaaansesesesesnsanannnnns 26
L 2ETLES ettt ettt —————a e e et ettt ————————etttaat—————————tttta——————ti——tan——otaan 26
N2 101) (< PSSR SR 27
AT TOUDIESIOOTINIG. ... evvveeiieeeiieieeieeeeeeeeeeeteeeeeeeeeeeeeaee et aaeeeeeeesaaeasessase s s aae s s aae s s sesasasaessaseasaaaeassssasasesssnnnaes 27
Chapter 8:PNES MaINENANCE.ccoieiiieiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e et e e e e e e et e e e e e e e ee e et e eeeeeeteeeeeeereeeeeeeeeeaaans 29
8.1AddIng a NeW PNES Database.uuuuuuuuueeiiiiniee s s e eeeesannnseeeesssnns 29
8.2Giving Systems Access t0 PINES ... 32
8.2.1Using pmount (18t MEtNOA).........coooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee et 32
8.2.2Using UNIX toolS (20d MELNOA)cciiiiiiiiieeee ettt e et eeaaans 32
8.2.3TrUSE PINES INOGES.... .ottt ettt e e e ettt e e e e e ettt b e s etaneeesaaeesanans 33
8.3RemovINg INValid DIr€CtOry EIIIIES.oevvieeiiiriieeeeeeee ettt e et et etteaeeeeeeeeeeetesaaeeeesaeeeesneseesnaees 33
8.3.1T0o remove them (1St MENOA)uuueueeeeiieiiieiiiiiieieeeeeeeeeieeeeee e e eeeesannnnseseesaenns 34
8.3.2To remove them (2nd MEthOA):......uueeiiiiiiiiieee e et e et e e raaaes 34
8.3.3To remove them (3rd MENOA)uuueeiiiiiiiieeeee et e e e e e e et e 35
8.4ReStOrING Tag INNETILAINCE.covvvueeeeeeeeiiitieeeeee ettt e e e e ettt e e e e e e et taasa e eseeeesanesssanseessnnaeens 35
S.5FIXING BIOKEN TaAGS....ciivuuuieeieiieiiiiieeee ettt ettt e e e et ettt eeeeseeee et eaaa e seseeetesasanasesesesessanssesnnnsesees 38
Chapter 9:ConfigUIation FIlE...........uuuuiiiiiiiiiiiiieiiiiiiiieiieeeteeeeeeeeeeeeeeeeeteeaaaeeeaeetesesaaetaresatasasann.eeeesaraaeees 39
9.1Configuration DESCIIPLON.ccoeiiiiiiiiiiiiieieee e 39
9.2Useful Shortcuts and VariabIes. e e e e eeeeannnnees 39
9.3NON-SEIVEL EINIIICS......ccoiiiiiiiiiiiieieeeeeeeeeeeeee e 39
9.3, 1BIOCKSIZES. ...ccooeiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeee e 39
9.3, 2CTOMS. ...coeieieeeeeeeeeeeeeeeeee e 39

LT T 103 (0) 11210 TR 41

9.3 . 5AISCIPIIME. ..ttt ettt ettt ettt ettt ettt ettt e et e e sbb e e s bt e e sabt e e sabe e e e abeeesbeeesbeeeeenaa 43
e I 415) 1 [+ o OO OO OO O OO OTSOUPPRRUPPRRPPPPPRNt 43
I 11 L) 1 00) AR 43
IR] o) 50 5 L TR PPRURRRRPP 44
IR IR A4 2100 15) 603 1/t OO 44
9.3, 10WED SEIVETuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesasasesesseseassessssssssesssssesssssssssssssssssssssssssssssssssssnsnsnnnnsneees 44

I NS Ao B = 1108 (S YT RTP PSR 45
I 1 T 0 =) 4= TSP 45
9.4.28VENE TCIAY......coooiiiiiiiiiieeeeeeeeeeeeeeee e 46
R 3R] (oY TS A= TSR 47
Q4. ALILE CLEIK ...ttt ettt e e e e e e e st s e s e e e e et e s aa e seseeesasaaansesaneaen 47

Q. 4.5VOIUIME CLEIKeiiviieeeeee ettt ettt e e e e e e e e et ta s eeeeeeeeeteaaaaaaeseesanseesnnseesannaes 48

I 111 (IS 4= SR TR 48

S 4] 01 o= 1| SO 48
A 3230010 VL 10) W TS) 4= SO PP UPURURURRPRPPRR 48
R v 115) (=) 01 RN 49
9.4, 10LIDIATY ITIAIAZET euvveeeeeeeeereeeeereeeeeteeetesaeeseseesessesesssssssesssssssssssssassssssssssssssssssssessssssssssnnnnseeees 50
L 55110117 TR 52
9.4.12MEdIA CRANZETeuviiiiiieeiieieieieeet ettt eeeet e aaaeaaetasaeaaaaasessasaasssssssssssssssssssesssnnnnneeees 57
Chapter 10:Restoring Enstore and PNES databases.........cooouuuuiiiiiiiiiiiiiieeee ettt eeeeees 59
10.1Rebuilding a PNFES database from an Enstore Database.covvvueueeeeiieeiiieiiieeeeeeeeeeiereieeeeeeennns 59
10.2Rebuilding an Enstore DB from a PNES database........coovuuueeiiiiiiiiiiiiiiieeeeeeeeeeieieeeeeeeeeeevvnieeeeans 61
Chapter 11:Metadata SCANNING......ccoueeeriieeiieeeiiieeeieeeeiteeerteeesteeesreeestteessaeessseeesseesssseeesssseeessasssseeeesns 64
L1 IDEEINITONS. c.ccoeeeeeeeeeeeee e 64
L] 2R EQUITEIMIEIIES .. eeeeeetiieeeee ettt eetetae e eeeeeeetaaaa e seseeesssaaaaaaeseeesesssnnsssssseeesssssannsssseseessssnnnessen 64
J R) AT eT0) 0010 0T=) 016 21 T0) o TP 64
LLLATUSAZER. . veeeuereeeereeeiteeetteesteeeeitteeetteeettee et e e s asaeesasaeeansaeensseeensseeensseeassseeassseesnsaeesnseesnnseesnnsssaeessannnns 65
11,4, 1USAZE EXAIMNPLES. ...evvvvveeeeieeeieeteeeeetteeeeeeeeeeeeeeeeeeaeeseaeesaaesseesaaaaeasssaeassaaaesaasaaesesesesannnsseeesesannnnsns 66

| RN 72100 01 11510 (TSRS 66
L1 ONOLICES OULDUL.evveeeieeeeeiiietee e e et e e ettt e e e e eeeeteaaa e eeseeetesaaanaseeeeestassanasesseesssssnnnsseeesesarannns 67
11.6.1Natural 1anguage NOtICES OULPUL.......eerrurieiriiierriiieeiteeeiteesiteesieeestteesbteesbeeeeessaaneeeeessnnnnnees 68
11.6.2Machine parsable NOLICES OULDUL..........uuvueurrrurerererereeeesseesseeeeeeeseeeeeeee————————————eereranneeeererrnnns 69

L1 7MitigatioN (TINK)...couveeeeureeeiureeeiieeeitieesoteeeeiteeeeteeeseteeesaseeessseessseeesseessseesnsseesssseesssssessssssssseeesennnes 71

Chapter 1: Enstore Overview

1.1 Introduction

Enstore is the mass storage system implemented at Fermilab as the primary
data store for large data sets. The data is stored on different types of magnetic
tapes in robotic tape libraries. Enstore is designed to to provide high fault
tolerance, availability and scalability sufficient for the current Fermilab and its
collaborators needs, as well as easy administration and monitoring.

It uses a client-server architecture which provides a generic interface for users
and allows for hardware and software components that can be replaced and/or
expanded.

Enstore has two major kinds of software components:

* the Enstore servers, which are software modules that have specific functions,
e.g., maintain database of data files, maintain database of storage volumes,
maintain configuration, look for error conditions and sound alarms,
communicate user requests down the chain to the tape robots, and so on.

* encp, a client program for copying files directly to and from the mass
storage system.

Enstore can be used directly only from on-site machines. Off-site users are
restricted to accessing Enstore via dCache, and in fact on-site users are
encouraged to go through dCache as well.

Enstore supports both automated and manual storage media libraries. It allows
for a larger number of storage volumes than slots. It also allows for
simultaneous access to multiple volumes through automated media libraries.
There is no preset upper limit to the size of a data file in the enstore system;
the actual size is limited by the physical resources. The lower limit on the file
size is zero. The upper limit on the number of files that can be stored on a
single volume is about 5000.

Enstore allows users to search and list contents of media volumes as easily as
they search native file systems. The stored files appear to the user as though
they exist in a mounted UNIX directory. The mounted directory is actually a
distributed virtual file system in PNES namespace containing metadata for
each stored file. Enstore eliminates the need to know volume names or other
details about the actual file storage.

Enstore Overview 9

http://www-pnfs.desy.de/
http://www.dcache.org/manuals/Book/

There are several installed Enstore systems at Fermilab. Currently these
include CDFEN for CDF Run II, DOEN for DO Run II, and STKEN for all
other Fermilab users. Web-based monitoring for the Enstore systems is
available at http://www-ccf.fnal.gov/enstore/. Currently, all storage libraries
are tape libraries. The Computing Division operates and maintains the tape
robots, slots, and other tape equipment, but for the present, experiments
provide and manage their own volumes.

1.2 Enstore architecture

The Enstore software architecture is presented in Figure 1. Enstore components are:

A configuration server keeps the system configuration information and provides it to
the rest of the system. Configuration is described in an easily maintainable
configuration file.

A volume clerk maintains the volume database and is responsible for declaration of
new volumes, assignments of volumes, user quotas, and volume bookkeeping.

A file clerk maintains the file database, assigns unique bit file IDs and keeps all
necessary information about files written into Enstore.

Info server provides read-only user access to information maintained by file — and
volume — clerks.

Multiple distributed library managers provide queuing, optimization, and distribution
of user requests to assigned movers.

Movers write / read user data to tapes. A mover can be assigned to more than one
library manager. A media changer mounts / dismounts tapes in the tape drives at the
request of a mover.

Alarm and log servers generate alarms and log messages from Enstore components
correspondingly.

An accounting server maintains an accounting database containing information about

completed and failed transfers and mounts.
A drivestat server maintains a database with information about tape drives and
their usage.

An inquisitor monitors the state of the Enstore components.

PNFS namespace server implements a name space that externally looks like a set of
Network File Systems.

Events are used in the Enstore system to inform its components about changes in the
configuration, completed and ongoing transfers, states of the servers, etc. An event
relay transmits these events to its subscribers.

10

Enstore Overview

http://www-ccf.fnal.gov/enstore/

Library
| Mosiox Library
Event Mover Manager
Relay
| Media
Inquisitor Media
Changer
Configuration Tos
Server
Networking IPC Server
Accounting Alarm
Server Server
Tnfo S Volume Clerk
o Server Drivestat File
Server Clerk

All Enstore components communicate using IPC based on UDP. Great care has been taken
to provide reliable communications under extreme load conditions. The user command, encp,
retries in case of an internal Enstore error. The number of user computers is not restricted,
and Enstore components can be distributed over unlimited number of nodes, tape libraries
and tape drives.

1.3 Enstore hardware requirements and
configuration

Enstore is a distributed and scalable system. It can be installed on a single Linux node, but
for the better performance the following needs to get taken into consideration. Enstore has
several databases which are used quite extensively depending on the number of data transfer

Enstore Overview 11

requests. Modern tape drives have transfer rates in the order of 100MB/s. Having this in
mind the following recommendations for hardware layout and system configuration are
suggested.

1.3.1 Hosts

There are no strict requirements for hosts. The general requirements are:

dual CPU Intel processor (3.0GHZ or better),

IMB (or more, better 2MB) of RAM

120MB (or more) system disk

1Gb (or more) network adapter for data transfer

100 Mb network adapter - not necessary but it comes with the system anyway and can
be used for private LAN connection with robotic library controller

6. Tape drive adapter (whichever is appropriate (SCSI, Fiber Channel) for mover node

NhE Wb =

1.3.2 Additional storage

Additional storage may be needed for large systems to hold databases, system information,
log files, etc. It can be any kind of appropriate raid arrays. For better flexibility of the system
you may want to considered some kind on NAS, such as Raid arrays connected to hosts via
Fiber Channel switch.

1.3.3 Network switch

There no strict requirements for the network switch other than it should provide an
adequate connection and transfer rates between enstore components as well as client hosts
and tape movers.

1.3.4 System Configuration

We recommend to have the following configuration:
For the small system (one robotic library with one or 2 tape drives and few thousands tapes).
Minimal configuration:

1. hostl: pnfs server, Apache web server, configuration_server, log_server,
alarm_server, inquisitor, event_relay, ratekeeper, postgres DB server, file_clerk,
volume_clerk, info_server, accounting_server, drivestat_server

2. host2: media_changer(s), library_manager(s), mover

*#** Note that this configuration may have problems as the number of accesses and their rates
increase. It is always better to run one mover
on a separate host

12 Enstore Overview

Recommended configuration:

. hostl : pnfs server
. host2: Apache web server, configuration_server, log_server, alarm_server, inquisitor,
event_relay, ratekeeper

. host3: media_changer(s), library_manager(s)

4. host4: postgres DB server, file_clerk, volume_clerk, info_server, accounting_server,
drivestat_server

5. host5: backups, plots, migration work, etc. This can be done on one of existing hosts
but may interfere with operations.

6. one host per mover.

[N

oY)

Enstore Overview 13

Chapter 2: Enstore Installation

2.1 Introduction

Enstore is written in python and currently requires a slightly modified python
language interpreter. Enstore uses a Fermi Tape Tool (FTT) library and set of tools
providing access to different types of tape drives. It is included into enstore rpm for
the revisions later than 2.0.0-0. This section describes installation and configuration
procedures of enstore and all required additional software.

2.1.1 Remote access

Before installing enstore you need to set up all its nodes for remote access.
Remote access and product distribution is provided by the following scripts in
$ENSTORE_DIR/sbin coming with enstore rpm:

1. enrsh - analog of rsh

2. enrcp - analog of rcp

3. enrsync - analog of rsync

2 options are currently provided for secured access: kerberized rsh and rcp, and ssh.
For using either of them you need to setup kerberized or (and) ssh access to all
enstore nodes for 'enstore' and 'root' accounts.

The mentioned scripts first check for the presence of the directory containing
kerberized utilities. If it is found they assume that krb5 utilities will be used. If
$ENSSH or SENSCP are defined the ssh and scp will be used. As the last resort they
try to use non kerberized rsh, rcp, and rsync. Installation and configuration of ssh and
kerberized rsh, rcp are out of the scope of this document.

2.1.2 Licensing
Enstore (BSD like):
Copyright (c) 1999-2011, FERMI NATIONAL ACCELERATOR
LABORATORY
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Enstore Installation 14

Neither the name of the FERMI NATIONAL ACCELERATOR LABORATORY,
nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
PNFS:
Enstore uses a Chimera (old name — PNES) virtual file system that
implements the Enstore namespace. It was written at DESY. The licensing
information and code can be obtained at the dcache site. Installation
instructions can be found here: http://www-pnfs.desy.de/gettingStarted.html
DCache must be installed at least on the node that will run namespace server.
Namespace nfs mount point(s) must be exported to any node transferring data to or
from enstore. Some instructions can be found here:
http://www-isd.fnal.gov/IS A/pnfs.html

2.1.3 Enstore rpm

The enstore rpm and additional rpms are located here ftp://ssasrv1.fnal.gov/en/.
Currently there are rpms for SL6 and SL7. They are located in sIf6x, and slf7x sub
directories correspondingly.

To use yum for installing enstore create the following file on all enstore nodes:
/etc/yum.repos.d/enstore.repo containing:

[enstore]

name=Enstore

baseurl=ftp://ssasrvi.fnal.gov/en/slf6x/$basearch

gpgcheck=0

enabled=1

For SLF7 enter baseurl=ftp://ssasrvi.fnal.gov/en/slf7x/$basearch.

For other OS versions please check enstore download page or contact enstore mailing
list. It is desirable that X-windows is installed at least on head node. This allows to

15

Enstore Installation

ftp://ssasrv1.fnal.gov/en/
http://ensrv1.fnal.gov/ISA/pnfs.html
http://www-pnfs.desy.de/gettingStarted.html
http://www.dcache.org/

run entv — application which dynamically shows data transfers.
Installation of enstore always begins on enstore head node - the node where
configuration server will be running.

2.1.4 Installing Enstore.

If you install the new enstore instance (site) the installation must begin on enstore
head node — the node, where enstore configuration server will run.

Enstore has 2 kinds of configurations — servers and movers. Mover require less
products installed (minimal installation), but may be installed as Enstore server.

2.1.4.1 Installing postgreSQL DBMS.

PostgreSQL DBMS must be installed on all Enstore nodes. Use the current
postgreSQL documentation for the installation instructions. Alternatively you may
install current PostgreSQL rpms from enstore repository with:

[root@head_node ~]# yum -y install postgresql*

Make sure that initdb, pg_config, postmaster, and psql are in /usr/bin. This can be done by
/usr/sbin/alternatives like:

VER="9.11"

Jor PROG in "initdb" "'pg_ctl" "'pg_config' "postmaster
rm -f /var/lib/alternatives/pgsql-${PROG};
/usr/sbin/alternatives --install /usr/bin/${PROG} pgsql-${PROG} \
letc/alternatives/pgsql-${PROG} 920 --slave /etc/alternatives/pgsql-${PROG} \
pgsql-${PROG} /usr/pgsql-${VER}/bin/${PROG},;

rm -f /var/lib/alternatives/pgsql-${PROG}man;

/usr/sbin/alternatives --install /usr/share/man/manl/${PROG}.1 \
pgsql-${PROG}man /etc/alternatives/pgsql-8{PROG}man 920 --slave \
/letc/alternatives/pgsql-${PROG}man pgsql-3{PROG}man \
/usr/pgsql-${VER}/share/man/manl/${PROG}.1;

done

"

'psql'’; do

Set group and user in the postgresql startup script as “enstore”.

2.1.4.2 Minimal installation (mover node)

Install the following rpms:mt-st, tcl, tk, enstore. Example:
[root@head_node ~J# yum -y install tcl tk
[root@head_node ~]# yum -y install enstore

2.1.4.3 Complete installation (server node)

For complete installation in addition to the minimal installation install the following
rpms: httpd, ncompress, gnuplot, ImageMagick. Example:

Enstore Installation 16

[root@head_node ~J# yum -y install ncompress gnuplot ImageMagick

2.1.4.4 Additional packages for Small Files Aggregation

For Small Files Aggregation (SFA) enstore service install additional packages:
gpid-python on all nodes using SFA service and additinally qpid-cpp-server on SFA
main server. The main SFA server will run gpidd and enstore SFA redirector and
dispatcher.

2.1.5 Configuring Enstore

Enstore configuration includes run-time environment, enstore site (instance)
configuration — enstore configuration file, and distributed environment configuration.
When enstore rpm is installed the user account “enstore” is created and its
.bash_profile and .bashrc are modified. The changes are done to the system allowing
to start enstore on boot (/etc/rc.d/init.d/enstore-boot,
/etc/rc.d/init.d/monitor_server-boot). The /etc/rc.local id also modified to create tape
devices on mover nodes.

2.1.5.1 Note about .bashrc and .bash_profile.

In recent enstore rpms .basrhc and .bash_profile will not be installed automatically
because they are installed by OS installation and update agents, such as puppet.
To install them manyally do:

cp -p /opt/enstore/external_distr/.bashrc ~enstore

cp -p /opt/enstore/etc/enstore.bash_profile ~enstore/.bash_profile

For SL7 remove the following lines from .bashrc:
set +u
set -u

2.1.5.2 Run-time environment.

Enstore run-time environment can be initially created on Enstore head node and then
copied all nodes running enstore servers and movers — all nodes where enstore was
installed and will be using this particular enstore instance (site).

2.1.5.2.1 Head node

Assuming that we are configuring the head node, login to head node as user
“enstore”. Do the following:

[enstore@head_node ~]$ whoami

enstore

[enstore@head_node ~]$ pwd

/home/enstore

17

Enstore Installation

[enstore@head_node ~]$ mkdir -p site_specific/config

[enstore@head_node ~]$ cp /opt/enstore/site_specific/config/setup-enstore
site_specific/config

Modify (or add if don't exist) the following lines in site_specific/config/setup-enstore:
export ENSTORE_CONFIG_HOST= # put here the name of your head node

export ENSTORE_CONFIG_FILE= # put here the path for enstore configuration file
export ENSTORE_MAIL= # put here email address for system administrators

export ENSSH=/usr/bin/ssh # to use ssh instead of rsh

export ENSCP=/usr/bin/scp # to use scp instead of rcp

export FARMLETS_DIR=/usr/local/etc/farmlets # farmlets directory (see below)

2.1.5.2.2 Enstore configuration file.

Enstore configuration file describes configuration of all Enstore servers and movers
as well as additional services used in and by Enstore. The configuration file is defined
by SENSTORE_CONFIG_FILE in $SENSTORE_HOME/config/setup-enstore file
and is downloaded from SENSTORE_CONFIG_HOST. We recommend to source
setup-enstore before proceeding with creation of the configuration file (reminder: do
this on enstore configuration node).

source /usr/local/etc/setups.sh

Alternatively if you login as user enstore the enstore environmet will be created
autonmatically.

Enstore configuration file is a python script. It can be created and modified using
Enstore configuration file is a python script. It can be created and modified using
/opt/enstore/etc/enstore_configuration_template or
/opt/enstore/etc/minimal_enstore.conf. Copy the selected file into
ENSTORE_CONFIG_FILE . It is recommended to put enstore configuration file into
$ENSTORE_HOME/site_specific/config directory. Description of configuration file
keys can be found in /opt/enstore/doc/config params.html.

You can also use one of the real enstore configuration files, for instance
$ENSTORE_DIR/etc/stk.conf.

For Fermilab enstore there is a git repository from which all run-time configuration
can be set up. The procedure is described in “Configure enstore configuration git

repostitory for the first time on configuration server”.

2.1.5.2.3 Regular node
If enstore instance has multiple nodes copy enstore configuration from head node to
these nodes (considering head_node as head node):
[enstore@new_node ~]$ pwd
/home/enstore

Enstore Installation 18

https://cdcvs.fnal.gov/redmine/projects/enstore-config/wiki/Configure_enstore_configuration_git_repostitory_for_the_first_time
https://cdcvs.fnal.gov/redmine/projects/enstore-config/wiki/Configure_enstore_configuration_git_repostitory_for_the_first_time
https://plone4.fnal.gov/P0/Enstore_and_Dcache/Members/moibenko/enstore/config_params.html/download

[enstore@new_node ~]$ mkdir -p site_specific/config
[enstore@new_node ~]$ scp head_node:site_specific/config/* site_specific/config

2.1.5.3 Farmlets

Farmlets are the files containing node names for distributed operations on enstore
nodes. These files are used by rgang command (multinode analog of rsh). You need
to create initial farmlets and then add and modify them when adding or removing
an enstore node.

Initially farmlets can be created by /opt/enstore/external_distr/make_farmlets.sh script
or manually. You have to create enstore configuration file and start configuration
server before running make_farmlets.sh. Otherwise they can be created manually.
Farmlets location is defined by SFARMLETS_DIR in
~/site_specific/config/setup-enstore. The farmlet may contain one entry specifiying
corresponding hos name or the list of host names to get served, entered one host per
line. The mandatory farmlet files are “enstore’ and “enstore-down”. These files are
used for starting enstore components on all servers and movers. The content of the
farmlets reflect the order of nodes to which commands are sent. In "enstore" first
node must be the one that runs enstore configuration server (head node), then the rest
of the server nodes and movers, "enstoredown"

contains the list of enstore nodes in the order reverse to the order in "enstore".

In the current installation farmlets are in /usr/local/farmlets directory on each enstore
node.

2.1.5.4 Name Space

Enstore client (encp) uses name space to present files to users. The files are arranged
into directories and can be viewed using Unix FS commands such as “Is”, “pwd”.
This name space was initially provided by pnfs, replaced later by chimera. Chimera
is part of dcache project which means that to have chimera dcache rpm needs to get
installed form dcache web site. Below is the example of dcache installation and
configuration to run chimera name space. Note that the name space service need to
get installed only on the node where it will be running. This service can be installed
on every server in the framework of Screw Driverless Enstore (SDE) project, which
requires the similar installation on all Enstore servers to provide easy replacement of

the Enstore services in case of failure.

2.1.5.4.1 Installation.

Dcache is implemented in java, so install java (for instance):
[root@gccenmvri6al# rpm -ivh http://javadl.sun.com/webapps/download/AutoDL?
Bundleld=78696

Install dcache rpm:

[root@ns_node]# rpm -ih
http://www.dcache.org/downloads/1.9/repo/2.2/dcache-2.2.15-1.noarch.rp
Configure dcache to run name server on gccenmvrl6a

19

Enstore Installation

http://javadl.sun.com/webapps/download/AutoDL?BundleId=78696
http://javadl.sun.com/webapps/download/AutoDL?BundleId=78696
http://www.dcache.org/

root@ns_nodel# cd /etc/dcache/

[root@ns_node]# cp -p dcache.conf dcache.conf.orig
Modify dcache.conf:

dcache.layout=${host.name}
dcache.namespace=chimera

chimera.db.user=enstore
chimera.db.url=jdbc:postgresql://localhost/chimera?prepare Threshold=3

defaultPnfsServer=gccenmvrl6a.fnal.gov
hsmStoragelnfoExtractor=org.dcache.chimera.namespace.ChimeraEnstoreStorageInfoExtract
or

dcache.log.mode=new
scripts=${dcache.home }/scripts
scheme=development

dcache.user=root

Create layout:

[root@ns_node dcachel# cd layouts/
Create ns_node.conf:
[dCacheDomain]
dCacheDomain/poolmanager]
dCacheDomain/broadcast]
dCacheDomain/loginbroker]
dCacheDomain/topo]

[namespaceDomain]
dcache.java.memory.heap=2048m
dcache.java.memory.direct=2048m
[namespaceDomain/pnfsmanager]
pnfsVerifyAllLookups=true
[namespaceDomain/cleaner]

[nfsDomain]|
dcache.java.memory.heap=2048m
dcache.java.memory.direct=2048m
[nfsDomain/nfsv41]
cell.name=NFS-${host.name }
nfs.v3=true

nfs.domain=fnal.gov
nfs.idmap.legacy=true

[dirDomain]
[dirDomain/dir]

Enstore Installation 20

Create DB directory (this must be on a separate large disk — external RAID):
as “root”

[root@ns_node]# mkdir /chimera

[root@ns_node]# chown enstore.enstore /chimera

as “enstore”

[enstore@ns_node ~]$ /usr/pgsql-9.3/bin/initdb -D /chimera

as “root”

[root@ns_node]# service postgresql-9.3 start

Starting postgresql-9.3 service: [OK]
[root@ns_nodel# createdb -U enstore chimera

Add line to /etc/fstab:

localhost:/ /pnfs/fs nfs
sync,rsize=4096,wsize=4096,user,intr,bg,hard,rw,noac,vers=3,nolock 0 0
Add lines to /etc/export (it must be later extended with names of client machines):
[root@ns_nodel# echo "/ localhost(rw,no_root_squash)'' >> /etc/exports
[root@ns_nodel# echo '/pnfs/fs localhost(rw,no_root_squash)' >> /etc/exports
Create /pnfs/fs:

[root@ns_node]# mkdir -p /pnfs/fs

Start chimera server

[root@ns_node pgsql]# chkconfig --add dcache-server

[root@ns_node pgsql]# chkconfig dcache-server on

[root@ns_node pgsql]# service dcache-server start

Mount /pnfs/fs:

[root@ns_node]# mount /pnfs/fs

Check that chimera works:

[root@ns_node pgsql]# mkdir -p /pnfs/fs/usr/demo_test

[root@ns_node pgsql]# touch /pnfs/fs/usr/demo_test/aaa

[root@ns_node pgsql]# Is /pnfs/fs/usr/demo_test

aaa

2.1.5.4.2 Namespace (pnfs) tags.
Before staring writing data into enstore you need to nfs mount name space, create

subdirectories, and set pnfs tags for enstore.
Below is some information regarding pnfs taken from "Enstore User Guide".

PNEFS Directory Limitations: It is recommended to keep the number of files in any
given PNFS directory under 2000. This is recommended for any NFS based file
system.

Namespace (pnfs) tags.

21 Enstore Installation

http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=5420&filename=EnstoreUserGuide.pdf

Before files can be written to tape, Enstore needs to know where and how to write
them. Pnfs uses tag files (usually just called tags) in the /pnfs namespace to specify
this type of configuration information, and encp transfers this information to Enstore.
Tags are associated with directories in the /pnfs namespace, not with any specific file,
and thus apply to all files within a given directory (with the exception noted below).
When a new directory in the /pnfs namespace is created, it inherits references

to the tags of its parent directory. It is a feature of PNFS that a change to a parent
directory will also affect its existing subdirectorys' tag references. Manually setting a
directory's tags will destroy references to its parent directory's tags. This may be what
you want to do, but be aware.

A file gets the tag references of its directory as they exist when the file is written to
Enstore, and these are what encp uses to access it. Subsequent changes to a directory's
tag references do not affect preexisting files, therefore it is possible to have files in a
directory to which the current directory tags do not apply.

Allowable characters within tags are: alphanumeric characters, underscore (_), dash
(), and slash (/).

Tag listing

The tags include (refer to "Enstore User Guide") :

file_family - this tag determines the file family associated with all files in this
directory.

file_family_width - this tag determines the file family width associated with all files
in this directory.

file_family_wrapper - this tag determines the file family wrapper associated with all
files in this directory. The default is cpio_odc.

library - this tag determines the virtual library (and thus the library manager)
associated with all files in this directory.

storage_group - this tag determines the storage group associated with all files in this
directory, and shows up as your experiment's top level directory under /pnfs.
Typically, one storage group is associated with an entire experiment. A storage group
is assigned to each experiment by the Enstore administrators. Users never change this
tag.

Viewing tags

Offsite - users cannot mount pnfs, and therefore cannot see tags.

Onsite - users: to see the values of the tags for a given directory, first setup encp (with
qualifier, see, for instance, section 6.1 “Setup encp” of "Enstore User Guide") then
cd to the /pnfs subdirectory of interest and enter the command:

% enstore sfs --tags

.(tag)(file_family) = dcache

(tag)(file_family_width) = 1

Enstore Installation 22

http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=5420&filename=EnstoreUserGuide.pdf
http://cd-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=5420&filename=EnstoreUserGuide.pdf

.(tag)(file_family_wrapper) = cpio_odc

.(tag)(library) = eagle

.(tag)(storage_group) = test

-rw-rw-r-- 11 xyz sys 6 Jul 26 10:22 .(tag)(file_family)
-tw-rw-r-- 11 xyz sys 1 May 5 2000 .(tag)(file_family_width)
-rw-rw-r-- 11 xyz sys 8 May 5 2000 .(tag)(file_family_wrapper)
-rw-rw-r-- 11 xyz sys 5 May 5 2000 .(tag)(library)

-tw-r--1-- 11 xyz sys 4 Jul 26 10:20 .(tag)(storage_group)

The output first lists the tags and their values, then the tags again in long format to
show the owners and

protection modes.

Setting tags

Setting tags

We recommend root 644 permissions for library and storage_group tags. Permissions
for other tags can

be 666 to allow everyone to

change file_family, file_family_width, or file_family_wrapper

root owned tags can be changed only on the machine where namespace server runs.
The sfs help command describes what options can be used to get pnfs information or
set certain values.

The tags are viewed / set by:

enstore sfs —library

enstoree sfs —storage_group

enstore sfs —file_family

enstore sfs —file_family_width

enstore sfs —file_family_wrapper. For tape there may be 2 kinds of wrapper —
“cpio_odc” and “cern”

2.1.6 Finishing installation and configuration

After enstore was installed and configured start enstore configuration server. This is
needed to install and configure:
enstore web site
enstore cron jobs
enstore databases
To start enstore configuration server login to enstore head node as user “enstore” and
do the following:
[enstore@head_node ~]$ enstore start --just config
Checking configuration_server.
Starting configuration_server
[enstore@head_node ~]$ enstore conf —show

23

Enstore Installation

This command will output the enstore configuration described in
$ENSTORE_CONFIG_FILE.

Note!!! All enstore commands have —help option. If you do not know what can be
done just type enstore and investigate what options are available. Also refer to
“Enstore Admin Guide” (can be found in
/opt/enstore/doc/guides/Enstore_Administrator_Guide.pdf)

2.1.6.1 Enstore web site
After enstore was installed and configuration server started install enstore web site:
[root@head_node J# source ~enstore/site_specific/config/setup-enstore
[root@head_node J# /opt/enstore/sbin/install_enstore_html
After this step you should be able to access the following web site:
http://www.the_host/enstore/
where the_host is the name of the enstore head node as defined in enstore
configuration file. In this particular case it is gccenmvrl6a.fnal.gov. Not all web
pages are available yet, as they get produced by running enstore servers.

2.1.6.2 Enstore databases
Enstore has 3 databases: file/volume, accounting, and drivestat.
1. enstoredb - file/volume database contains information about all files written to
enstore and all volumes (tapes) defined in enstore
2. accounting -contains information about all successful and failed data transfers
3. drivestat database contains information about tape drives configured in the
system
There is one more database (operation), which is used only at FNAL. All these
databases can be served by separate DB servers or just by one (this is defined in
enstore configuration file). Install PosrgresQL on the server(s) defined in the enstore
configuration file. The script (SENSTORE_DIR/sbin/create_database.py), which
configures and creates databases uses enstore configuration, but does not consider the
host name. The configuration entries for databases are:
file/volume (enstoredb) — database
accounting — accounting_server
drivestat — drivestat_server
operation — no dedicated enstore server

Described here installation procedure is based on the assumption that the installation
starts on the node where enstore configuration server will run — enstore head node.
- enstoredb

check what node enstoredb will be running on:

[enstore@head_node ~]$ enstore conf --show database

{'db_dir": '/diskb/enstore/enstore-db-backup’,

'db_host'": 'db_node.fnal.gov',

'db_port': 8888,

Enstore Installation 24

'dbarea’: '/diskb/enstore/enstore-db’,

'dbhost': 'db_node.fnal.gov',

'dbname': 'enstoredb’,

'dbport': 8888,

'dbserverowner': 'products’,

'dbuser': 'enstore’,

jou_dir": '/diskb/enstore/enstore-journal’,

'status’: ('ok', None)}
According to the output enstoredb will be running on host db_node.fnal.gov The
following needs to be done as user “root” with enstore environment (which can be
done by sourcing ~enstore/site_specific/config/setup-enstore for instance).
Create and start enstoredb:
[root@db_node]# python SENSTORE_DIR/sbin/create_database.py enstoredb

Add entries to dbarea/pg_hba.conf:

host enstoredb enstore <dbhost_1IP>/32 trust
host enstoredb enstore_reader <dbhost_IP>/32 trust
Update DB :

[root@db_nodeJ# python SENSTORE_DIR/sbin/update_database_schema.py enstoredb
2013-08-22 13:53:40 : Executing command downloadXml --dbms=postgres
--host=db_node.fnal.gov --dbname=enstoredb --port=8888 --user=enstore

diffxml2ddl --dbms=postgres /opt/enstore/databases/schemas/xml/enstoredb.xml schema.xml
> enstoredb_diff _tmp.sql

2013-08-22 13:53:40 : successfully created diff DDL file: enstoredb_update.sql
2013-08-22 13:53:40 : examine the content of this file

2013-08-22 13:53:40 : after that apply to database like so:

2013-08-22 13:53:40 : psql -h db_node.fnal.gov -p 8888 -U enstore enstoredb -f
enstoredb_update.sql

[root@db_node]# psql -h db_node.fnal.gov -p 8888 -U enstore enstoredb -f enstoredb_update.sql

For accounting, drivestat, operation (just FNAL) repeat steps done for enstoredb,

99 C¢

replacing “enstoredb” with * accounting”, “drivestat”, “operation”.

2.1.6.3 Enstore cron jobs
Install cron jobs defined in enstore configuration file (this must be done on each

server node in enstore configuration):
[root@head_node]# SENSTORE_DIR/tools/install_crons.py

2.1.7 Starting, restarting and stopping enstore

25 Enstore Installation

As described in “ Configuring Enstore* Enstore starts automatically on boot on each
Enstore machine, but they need to get (re)booted in a certain order:

1. Head node.
2. Rest of servers.
3. Movers.

Enstore can also be started, restarted, or stopped by corresponding enstore command
in two different ways (NOTE! You must be user “enstore™!):
1. Locally on each enstore server:
[enstore@head_node ~]$ enstore start
Outputs actions (if no output there is nothing to start on this node).

2. Remotely on a selected server, group of servers or the whole set of
servers. This command uses farmlets:
[enstore@head_node ~]$ enstore Estart
This command starts enstore on all nodes in the order, defined in
farmlet “enstore”
[enstore@head_node ~]$ enstore Estart servers
This command starts enstore on all nodes in the order, defined in farmlet
“servers”

To check what enstore related processes are running you can use the following
commands:

EPS — to see what entsore related processes run locally

enstore EPS - to see what entsore related processes run on all enstore nodes

enstore EPS servers - to see what entsore related processes run on servers defined in
farmlet “servers”.

2.1.8 What next?

Note! If you change enstore configuration file you must reload configuration by the
following command:

enstore config —config SENSTORE_CONFIG_FILE -load

Note!! All commands must be done as user enstore if not specified differently.
Note!!! All enstore commands have —help option. If you do not know what can be
done just type enstore and investigate what options are available. Also refer to
“Enstore Admin Guide” (can be found in
/opt/enstore/doc/guides/Enstore_Administrator_Guide.pdf)

To start writing data you need to declare volumes in robotic library to enstore. This is
done with the following command on enstore Volume Clerk host:

#_enstore vol — add <VOLUME NAME> <LIBRARY> <STORAGE GROUP>
<FILE FAMILY> <WRAPPER> <MEDIA TYPE>

Enstore Installation 26

<VOLUME BYTE CAPACITY>

where:

VOLUME_NAME — name of tape volume as known to the robotic library
LIBRARY - name of enstore library (same as namespace library tag)
STORAGE_GROUP - storage group to which this tape is assigned (or none)
FILE_FAMILY - file family to which this tape is assigned (or none)
WRAPPER - “cpio_odc” or “cern” (or none)

MEDIA_TYPE - type of media as known to the robotic library
VOLUME_BYTE_CAPACITY - capacity of tape in bytes

After volumes are added to enstore you can start writing to them. Please refer to
"Enstore User Guide" and “Enstore Admin Guide”

27

Enstore Installation

Chapter 3: Enstore Commands

Enstore provides commands that allow you to communicate with various
components of the system. The basic syntax of all Enstore commands is

% enstore <command> [--option [argument] ...]

All options start with a double dash (- -). The return codes are O (zero) for
success, non-zero for failure (currently all failures return number 1).

3.1 enstore info

As of encp v3_2, the command enstore info supersedes enstore
file and enstore volume. The developers may decide to remove
these latter two commands in future versions of encp.

This command communicates with the File Clerk (see section 8.1 File Clerk)
and the Volume Clerk (see section 8.2 Volume Clerk). It returns information
about specified file(s) or volume(s).

Syntax:

% enstore info [--option [argument] ...]
Options:

-h, --help
Prints the options (i.e., prints this message). Example:

$ enstore info --help

Usage:
info [-h --bfid= --help --list= --ls-active= --usage]
--bfid <BFID> get info of a file
--file <PATH|PNFSID|BFID|VOL:LOC> get info on a file
--find-all-copies <BFID> find all copies of this file
--find-copies <BFID> find the immediate copies of this file

--find-duplicates <BFID> find all duplicates related to
this file

--find-original <BFID> find the immediate original of this
file

--find-the-original <BFID> find the very first original of
this file

--gvol <VOLUME_NAME> get info of a volume in human readable
time
format
-h, --help print this message
--just <VOLUME_NAME> wused with --pvols to list problem
--list <VOLUME_NAME> 1list the files in a volume
--ls-active <VOLUME_NAME> 1list active files in a volume
--1s-sg-count list all sg counts
--pvols list all problem volumes

Enstore Commands 28

- -show-bad list all bad files
--show-copies <BFID> all copies of a file

--show-file <BFID> show info of a file

--usage print short help message

--vol <VOLUME_NAME> get info of a volume

--vols list all volumes
--bfid <BFID>
Returns information (metadata) about the file corresponding to
the specified bfid.

You can get the bfid of a file from the enstore pnfs
--bfid <FILE_NAME> command (section Error: Reference
source not found); get the filename from searching PNFS
namespace.

Example:

$ enstore info --bfid CDMS105770745000000

{'bfid': 'CDMS105770745000000',
'complete_crc': 1191066979L,
'deleted': 'no',
'drive': 'stkenmvr7a:/dev/rmt/tps0din:4560000022"',
'external_label': 'V03222'
'location_cookie': 'GOOO_000000000_0005661",
'pnfs_mapname': '',

"pnfs_name0d':
'/pnfs/fs/usr/test/xyz/srmtest/ar017983.0001phys_10",

'pnfsid': 'GOO500000000000000190EA8",
'pnfsvid': '',

'sanity_cookie': (65536L, 3203712884L),
'size': 197354833L}

--find-all-copies <BFID>

Report all the file BFIDs that are duplicates or multiple copies of
the specified file BFID, including the specified file itself.
Multiple copies are extra copies of a file written by the same encp
process that wrote the original file. Duplicated copies are

29

Enstore Commands

multiple copies that were written to another tape by the Enstore
administrators some time after the original was written to tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first.

$ enstore info --find-all-copies
CDMS115788240600000

CDMS115788240600000
CDMS123800281300002

$ enstore info --find-all-copies
CDMS123800281300002

CDMS123800281300002

See also encp--copies; enstore info --find-copies,
--find-duplicates, --find-original, --find-the-original and
--show-copies for more information.

--find-copies <BFID>

Report the file BFIDs that are immediate duplicates or multiple
copies of the specified file BFID, including the specified file
itself. Multiple copies are extra copies of a file written by the
same encp process that wrote the original file. Duplicated copies
are multiple copies that were written to another tape by the
Enstore administrators some time after the original was written to
tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first.

$ enstore info --find-copies CDMS115788240600000

CDMS123800281300002

$ enstore info --find-copies CDMS123800281300002

See also encp--copies; enstore info --find-all-copies,
--find-duplicates, --find-original, --find-the-original and
--show-copies for more information.

--find-duplicates <BFID>

Report the file BFIDs that are associated as a duplicate or

multiple copy file of the specified file BFID, including the
specified file itself. This command has the same effect as:

Enstore Commands

30

$ enstore info --find-all-copies “enstore info --find-the-original
<BFID>" Multiple copies are extra copies of a file written by the
same encp process that wrote the original file. Duplicated copies
are multiple copies that were written to another tape by the
Enstore administrators some time after the original was written to
tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first.

$ enstore info --find-duplicates
CDMS115788240600000

CDMS115788240600000
CDMS123800281300002

$ enstore info --find-duplicates
CDMS123800281300002

CDMS115788240600000
CDMS123800281300002

See also encp--copies; enstore info --find-all-copies,
--find-copies, --find-original, --find-the-original and
--show-copies for more information.

--find-original <BFID>

Report the file BFIDs that is the immediate original of the
specified duplicate or multiple copy file BFID. Multiple copies
are extra copies of a file written by the same encp process that
wrote the original file. Duplicated copies are multiple copies that
were written to another tape by the Enstore administrators some
time after the original was written to tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first.

$ enstore info --find-original
CDMS115788240600000

None

$ enstore info --find-original
CDMS123800281300002

CDMS115788240600000

See also encp--copies; enstore info --find-all-copies,
--find-copies, --find-duplicates, --find-the-original and

31

Enstore Commands

--show-copies for more information.

--find-the-original <BFID>

Report the file BFIDs that is the overall original of the specified
duplicate or multiple copy file BFID. Multiple copies are extra
copies of a file written by the same encp process that wrote the
original file. Duplicated copies are multiple copies that were
written to another tape by the Enstore administrators some time
after the original was written to tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first.

$ enstore info --find-the-original
CDMS115788240600000

CDMS115788240600000

$ enstore info --find-the-original
CDMS123800281300002

CDMS115788240600000

See also encp--copies; enstore info --find-all-copies,
--find-copies, --find-duplicates, --find-original
and--show-copies for more information.

Enstore Commands

32

This option may be used in any of four ways to return the same
information, depending on what information you initially know
about the file.

--file <PATH>

--file <BFID> (equivalentto enstore info --bfid
<BFID>)

--file <PNFSID>

--file <VOLUME:LOCATION>

Returns information on the specified file.

This example uses the path:

$ enstore info --file /pnfs/test/NULL/1KB_251

{'bfid': 'WAMS111453908000000',
'complete_crc': OL,
'deleted': 'no',
'‘drive': 'rain:/dev/null:0',
'external_label': 'NULLO1',
'gid': 6209,
'location_cookie': '0000_000000000_0000609',
'pnfs_name@': '/pnfs/test/NULL/1KB_251"',
'pnfsid': '00O1OCEEEEEEEEEEEE056258',
'sanity_cookie': (1024L, OL),
'size': 1024L,
'uid': 5744}
The file could also be specified as one of the following (BFID,
PNFSID or VOLUME:LOCATION

(external_label:location_cookie):

$ enstore info --file WAMS111453908000000
$ enstore info --file 000100000000000000056258

$ enstore info --file
NULLO1:0000_000000000_0000609

Enstore Commands

--gvol <VOLUME_NAME>

This is just like enstore info --vol <VOLUME_NAME>,
except that this one prints human-readable time fields (e.g.,
“declared”, “first_access” and “last_access” fields). Example:

$ enstore info --gvol V03332

{'blocksize': 131072,
'capacity_bytes': 64424509440L,
'declared': 'Wed Jan 16 16:13:57 2002',
'eod_cookie': '0000_000000000_0000044",
'external_label': 'v03332',
'first_access': 'Fri May 10 12:59:35 2002',
'last_access': 'Mon Oct 27 22:35:45 2003',
'library': '9940',
'media_type': '9940',
'non_del_files': 43,
'remaining_bytes': 1785262080L,
'sum_mounts': 234,
'sum_rd_access': 213,
'sum_rd_err': O,
'sum_wr_access': 43,
'sum_wr_err': 0,
'system_inhibit': ['none', 'full'],

'user_inhibit': ['none', 'none'],

'volume_family': 'cms.objy_data_files.cpio_odc',

'wrapper': 'cpio_odc'}

--just

Used with --pvols to list problem. See enstore

--pvols

info

Enstore Commands

34

--list <VOLUME_NAME>

Lists the files in the specified volume with their volume name,
bfid, size, location (file number) on volume, delete flag, and the
original filename in pnfs.

You can get the volume name from the enstore pnfs
command, using either --xref or --layer (section Error:
Reference source not found), or from the “external_label” field of
the enstore info --bfid <BFID> command (shown
above).

This replaces both enstore file --list
<VOLUME_NAME> and enstore volume --list
<VOLUME_NAME>.

Example:

$ enstore info --list V03222

label bfid size location_cookie delflag

original_name

V03222 CDMS106503213600000 983803 0000_000000000_0011536 deleted
/pnfs/fs/usr/eagle/dcache-tests/274.dcache_page_p_27750

(This shows one of many lines appearing in the real output, and is
reformatted to two lines for readability.)

--Is-active <VOLUME_NAME>

Lists active files in a volume.

You can get the volume name from the enstore pnfs
command, using either --xref or --layer (section Error:
Reference source not found), or from the “external_label” field of
the enstore info --bfid <BFID> command (shown
above).

Example:

$ enstore info --ls-active V03222

/pnfs/fs/usr/eagle/dcache-tests/101.dcache_page_a_24401
/pnfs/fs/usr/eagle/dcache-tests/101.dcache_page_24401
/pnfs/fs/usr/test/stress-test/myfilel
/pnfs/fs/usr/test/stress-test/myfile3d
/pnfs/fs/usr/test/stress-test/file128m-11

Enstore Commands

--1s-sg-count <VOLUME_NAME>

Lists allocated tape counts by library and by storage group. If
“storage group” has value “none”, the negative number under
“allocated” gives the number of tapes that are available in the
robot, but not yet assigned to a storage group.

Example:

$ enstore info --ls-sg-count V03332

library storage group allocated
9940 ktev 189
9940 1lqgcd 150
9940 miniboone 132
9940 minos 109
9940 none -13
9940 patriot 20
9940 sdss 608
9940 test 28
9940 theory 70
CD-9940B cms 129

--pvols [--just <VOLUME_1> <VOLUME_2> ...]

Without - -just, this lists all problem volumes. With
--just followed by a space-separated list of volume names, it
lists only the problem volumes among the given list.

The columns returned are: volume name, primary status, primary
status time, secondary status, secondary status time. (The time
fields are relatively new; not all volumes will display them.)
Example:

$ enstore info --pvols

==== readonly

LEGL10 none * readonly 0913-1540
LEGL98 none * readonly 0819-2329
==== full

V04845 none * full *
V04846 none 1023-1032 full *
V04847 none * full *
V04848 none * full *
V04849 none * full *
V04850 none * full 1016-2315
V04851 none * full 1017-0409

$ enstore volume --pvols --just V03332

Enstore Commands

36

(no sample output available)

--show-bad

Lists all files that are currently unavailable due to media
problems. When a tape problem is discovered, the tape is sent to
the vendor for file recovery. In the interim, a cloned tape is made
available to users, with the bad files marked. This command
option lets you list the bad files. The output lists the tape
number, BFID, file size in bites, and pnfs path of file.

Example:

$ enstore info --show-bad

V00053 CDMS105770745000000 95530315
/pnfs/fs/usr/xyz/my_data/2004-4/.bad.FO00xyz43_0000.mdaq.root

We show only one output line, and it is displayed on two lines for
readability. Notice the “.bad.” at the front of the filename; this
is how the bad files are marked.

Enstore Commands

--show-copies <BFID>

Report the file BFIDs that are associated as a duplicate or
multiple copy file of the specified file BFID, including the
specified file itself. This command has a similar effect to:

$ enstore info --find-duplicates <BFID>

but outputs more information. Multiple copies are extra copies of
a file written by the same encp process that wrote the original
file. Duplicated copies are multiple copies that were written to
another tape by the Enstore administrators some time after the
original was written to tape.

Here are two files where the first BFID shone is the original and
the second one is a duplicate of the first. The columns are the
BFID, Storage Group, Library, Media Type, Label, Deleted
Status, Size, CRC, PNFS ID and Original PNFS Path.

$ enstore info --show-copies CDMS115788240600000

CDMS115788240600000 ENDEV LTO3 LTO3 TEST85
0000_000000000_0000001 no 5290065920 3951343656
00020000000000000003DD20
/pnfs/data2/s18500/fcdfcaf566/fcdfcaf566_4000_1157882036.data

CDMS123800281300002 ENDEV LTO3 LT03 TEST21
0000_000000000_0000001 no 5290065920 3951343656
00020000000000000004C4D8
/pnfs/data2/s18500/fcdfcaf566/fcdfcaf566_4000_1157882036.data

$ enstore info --show-copies CDMS123800281300002

CDMS115788240600000 ENDEV LTO3 LTO3 TEST85
0000_000000000_0000001 no 5290065920 3951343656
00020000000000000003DD20
/pnfs/data2/s18500/fcdfcaf566/fcdfcaf566_4000_1157882036.data

CDMS123800281300002 ENDEV LTO3 LTO3 TEST21
0000_000000000_0000001 no 5290065920 3951343656
00020000000000000004C4D8
/pnfs/data2/s18500/fcdfcaf566/fcdfcaf566_4000_1157882036.data

See also encp--copies; enstore info --find-all-copies,
--find-copies, --find-original, --find-the-original, --show-copies
and --show-file for more information.

--show-file <BFID>

Display information about the file specified by its BFID and
some information about the volume where the file is located. The
columns are the BFID, Storage Group, Library, Media Type,
Label, Deleted Status, Size, CRC, PNFS ID and Original PNFS
Path.

$ enstore info --show-file GCMS125028149900000

GCMS125028149900000 gcc LTO3 LTO3 TEST11
0000_000000000_0006692 yes 2532 3516567016

Enstore Commands

38

0001000000000000045BC440
/pnfs/fnal.gov/testers/NULL/20090814-213844-23461-0.txt

See also enstore info --bfid and--show-copies for more
information.

--usage
Prints short help message. Example:

$ enstore info --usage

Usage:
info [-h --bfid= --help --list= --ls-active= --usage]

--vol <VOLUME_NAME>
Returns detailed information about specified volume
Example:

$ enstore info --vol V03332

{'blocksize': 131072,
'capacity_bytes': 64424509440L
'declared': 1011219237.849051,
'eod_cookie': 'G000_000000000_0000044",
'external_label': 'V03332'
'first_access': 1021053575.259737,
'last_access': 1067315745.238969,
'library': '9940',
'media_type': '9940'
'non_del_files': 43,
'remaining_bytes': 1785262080L
'sum_mounts': 234,
'sum_rd_access': 213,
'sum_rd_err': O,
'sum_wr_access': 43,
'sum_wr_err': 0,
'system_inhibit': ['none', 'full'],
'user_inhibit': ['none', 'none']
'volume_family': 'cms.objy_data_files.cpio_odc',
'wrapper': 'cpio_odc'}

39

Enstore Commands

--vols

or

--vols <VOLUME_STATUS>

or

--vols <KEY> <VALUE>

Lists all volumes with their available space, the system inhibits,
the library, the volume family (period-separated concatenation of
storage group, file family and file family wrapper) and any
comments.

The VOLUME_STATUS argument is optional. If left off, all
volumes are listed. Possible values for this argument include:
NOACCESS, NOTALLOWED, full, read_only, migrated.

The KEY option accepts: storage_group, library and media_type
Example:

$ enstore info --vols

label avail. system_inhibit library vol_family
comment

V00053 1.19GB (none full) eagle
cms.objy data_files.cpio_odc

V00054 0.51GB (none full) eagle
cms.objy_data_files.cpio_odc

V00055 0.17GB (none full) eagle
theory.theory-canopy-C.cpio_odc

V00056 0.65GB (none full) eagle

theory.theory-canopy-D.cpio_odc

3.2 enstore library

This command communicates with the Library Manager (see section 8.3

Library Manager). You can use it to get information pertaining to a particular

Library Manager. Use the online monitoring pages (see Chapter 10:
Monitoring Enstore on the Web) to find the library manager of interest.

Syntax:

% enstore library [--option [argument] ...] <library>

The <library> argument is required except when using the --help
option; the “. 1ibrary_manager” portion of the library name is optional.

Options:

Enstore Commands

40

-h, --help
Prints this message (i.e., prints the options). Example:

$ enstore library --help

Usage:
library [OPTIONS]... library

--get-asserts <library> print sorted lists of pending volume
asserts

--get-queue <HOST_NAME> print queue submitted from the
specified host.
If empty string specified, print the
whole queue

--get-suspect-vols print suspect volume list
) --get-work-sorted print sorted lists of pending and
active requests
-h, --help prints this messge
--usage prints short help message

--get-asserts <LIBRARY>
Prints sorted lists of pending volume asserts for specified library.
Example:

$ enstore library --get-asserts
9940.1library_manager

Pending assert requests: 0
Active assert requests: 0
{'status': ('ok', None)}

41

Enstore Commands

--get-queue <HOST_NAME> <LIBRARY>

Prints queue submitted from the specified encp client host. Both
arguments are required. If quoted empty string is specified for
host name, it prints the whole queue (for all hosts). Examples:

$ enstore library --get-queue stkensrv3
9940.1library_manager

Pending write requests

Active requests

Pending read requests: 0

Pending write requests: 2

Active read requests: ©

Active write requests: ©

{'status': ('ok', None)}
The top two lines tell us that there are no pending or active
transfers involving stkensrv3 for the 9940 library manager. The
4th line tells us there are 2 pending write requests for this library
manager from hosts other than stkensrv3.
If all hosts are specified (the next example), the command returns
the fields: host name, library manager, username (of encp
request), input filename, and output filename for each pending
and/or active request (3 shown here), and ends with a summary:

$ enstore library --get-queue ""
9940.1library_manager

Active requests

fnsimu2 9940.library_manager lixn
/pnfs/btev/geant2003/xiaonan/dstar_xiaonan_1.evt.gz
/scr/bphys6/1lixn/dstar_xiaonan_1.evt.gz M 9944

fsgi@l 9940.library_manager rschultz
/usr/bdms/rschultz/f1_066_uplsr7/fl_ed_066_uplsr7.1ldhi
/pnfs/BDMS/lens/f1l_066_uplsr7/fl_ed_0663

fnsfh 9940.1library_manager minfarm
/export/stage02_minos/CO0040259_0000.tdaq.root
/pnfs/minos/caldet_reco/tdag_data/2002-09/C0004027

Pending read requests: 0

Pending write requests: ©

Active read requests: 1

Active write requests: 2

{'status': ('ok', None)}

--get-suspect-vols <LIBRARY>
Prints suspect volume list for specified library manager. See
10.6.1 Suspect Volumes. Example:

$ enstore library --get-suspect-vols
9940.1library_manager

[{'movers': ['994071.mover'], 'external label': 'V04523',

Enstore Commands

42

"time': 1067290586.907726%}, {'movers"': ['994051.mover ',
'994061.mover’', ']

--get-work-sorted <LIBRARY>
Prints sorted lists of pending and active requests. It sorts by
queue. Example:

$ enstore library --get-work-sorted
9940.1library_manager

{'write_queue': [], 'read_queue': [], 'admin_queue': []}
[{'status': ('ok', None), 'vc': {'status': ('ok', None),

'declared': 1011741604.130481, 'si_time': [1041612783.99499, 0],
'blocksiz]

3.3 enstore monitor

This command communicates with the Monitor Server (see Chapter 10:
Monitoring Enstore on the Web) to get network speed information.

On machines with an enstore.conf file (see Appendix A: Network
Control), the enstore monitor command uses the routing already
established there. If enstore monitor set up its own, it would interfere
with the routes currently in use.

Syntax:

% enstore monitor [--option [argument] ...]

-h, --help
Prints this message (i.e., prints the options). Example:

$ enstore monitor -h

Usage:
monitor [-h --help --host= --usage --verbose=]
-h, --help prints this messge
--host <HOSTIP> selects a single host
--port <PORT> selects a port
--usage prints short help message

--verbose <VERBOSE> print out information.

Enstore Commands

--host [HOST_NAME or IP_ADDRESS]

Returns network rate for the specified host (Enstore node). If you
don’t specify host, it runs the command for all hosts. Example
below shows results for a single host. Example:

$ enstore monitor --host stkensrv3
Trying stkensrv3.fnal.gov

Network rate measured at 11.33 MB/S recieving and 11.1 MB/S
sending.

--port <PORT>
Selects the specified port. If you don’t specify port, it runs the
command for the default port.

--verbose <INTEGER_VALUE>

This command is used to help find and fix network problems. It
prints detailed information about actions taken. The higher the
number you give as an argument, the more info displayed.
Example:

$ enstore monitor --host stkensrv3 --verbose 20

6 Tue Oct 28 10:48:13 2003 msc called with args: ['monitor',

'--host', 'stkensrv3', '--verbose=20']
13 Tue Oct 28 10:48:13 2003 Get monitor_server config info from
server

Trying stkensrv0.fnal.gov

13 Tue Oct 28 10:48:13 2003 Get None config info from server

13 Tue Oct 28 10:48:13 2003 Get None config info from server

13 Tue Oct 28 10:48:13 2003 Get log_server config info from server
13 Tue Oct 28 10:48:13 2003 Get log_server config info from server
13 Tue Oct 28 10:48:13 2003 Get None config info from server

13 Tue Oct 28 10:48:13 2003 Get alarm_server config info from
server

10 Tue Oct 28 10:48:14 2003 Connecting to monitor server.
10 Tue Oct 28 10:48:14 2003 Obtaining error status for data socket.
10 Tue Oct 28 10:48:15 2003 Get the final dialog rate information.

Network rate measured at 11.34 MB/S recieving and 11.23 MB/S
sending.

3.4 enstore pnfs

Enstore has a pnfs command that allows you to retrieve a variety of
information, as listed in the option table below. Off-site users cannot
mount /pnfs, and therefore cannot run this command.

[:‘?Using this command to perform PNFS manipulations and/or change
PNFS tags is restricted to Enstore administrators and/or their designated
gurus, and is covered in Appendix B: Changing PNFS Tags.

Enstore Commands 44

Syntax:

% enstore pnfs [--option [argument] ...]

--help

List the options for the enstore pnfs command. Example:
% enstore pnfs --help
Usage:
pnfs [OPTIONS]...
--bfid <FILENAME> lists the bit file id for file
--cat <FILENAME> [LAYER] see --layer
--file-family [FILE_FAMILY] gets file family tag, default; sets
file
family tag, optional
--file-family-width [FILE_FAMILY_WIDTH] gets file family width
tag,
default; sets file family tag, optional
--file-family-wrapper [FILE_FAMILY_WRAPPER] gets file family
width tag,
default; sets file family tag, optional
--filesize <FILE> print out real filesize
-h, --help prints this messge
--info <FILENAME> see --xref
--layer <FILENAME> [LAYER] 1lists the layer of the file
--library [LIBRARY] gets library tag, default; sets library
tag,
optional
--tag <TAG> [DIRECTORY] lists the tag of the directory
--tagchmod <PERMISSIONS> <TAG> changes the permissions for the
tag; use
UNIX chmod style permissions
--tagchown <OWNER> <TAG> changes the ownership for the tag;
OWNER can

be 'owner' or 'owner.group'

--tags [DIRECTORY] lists tag values and permissions
--usage prints short help message
--xref <FILENAME> lists the cross reference data for file

--bfid <FILE_NAME>

pnfs space and use relative/absolute path as needed.
Example:

WAMS104102942800000

Returns the BFID of the file; select file name to specify from within

$ enstore pnfs --bfid /pnfs/mist/zuu/100MB_002

--cat <PATH_TO_FILE> [LAYER]
--cat is an alias for --layer; see --layer.

45

Enstore Commands

--file-family
Prints the file family name associated with the current pnfs directory.
Example:

$ enstore pnfs --file-family

dcache

--file-family-width
Prints the file family width associated with the current pnfs directory.
Example:

$ enstore pnfs --file-family-width

1

--file-family-wrapper
Prints the file family wrapper associated with the current pnfs
directory. Example:

$ enstore pnfs --file-family-wrapper

cpio_odc

--filesize <PATH_TO_FILE>
Prints the real filesize in bytes; useful for files of size greater than
(2G-1) bytes, since PNFS stores file size as 1 in this case. Example:

$ enstore pnfs --filesize a01

24198

--info <PATH_TO_FILE>
Prints information about the file, this is an alias for the --xref option.
See --xref.

Enstore Commands

46

--layer <PATH-TO-FILE> <LAYER>

Prints information about the file. Layer O is used internally by pnfs
and it can’t be viewed. Layer 1, the default, gives the file’s BFID.
Layer 2 is used by dCache. Layers 3, 5, 6, 7 are not currently used.
Layer 4 produces output equivalent to --xref, but returns info without
field labels.

The option --cat is an alias for this option.

Examples:

Layer 1 gives BFID (default):

$ enstore pnfs --layer a0l

CDMS105889726300000

$ enstore pnfs --layer a01 1
CDMS105889726300000

Layer 2 is used for dCache:

$ enstore pnfs --layer a01 2

2,0,0,0.0,0.0
:c=1:d15ef6a3;1=554423;
w-fcdfdata018-1

The file has a version] crc of c=1:d15ef6a3, it has a length 1=554423,
and it is in pool w-fcdfdata018-1.

$ enstore pnfs --layer a0l 2

2,0,0,0.0,0.0

Layer 4 gives --xref output (see --xref):
$ enstore pnfs --layer a01 4

V03222

0000_000000000_0006264

24198

dcache
/pnfs/fs/usr/test/xyz/srmtest/test_1 1/a01

000500000000000000191030

CDMS105889726300000
stkenmvr5a:/dev/rmt/tps3din: 4560000022

47

Enstore Commands

--tags [DIRECTORY]

List the tag values of specified PNFS directory (if no directory
argument, it lists tags for current working directory (cwd or pwd)).
Example:

$ pwd
/pnfs/test/xyz/srmtest/test_1_1

$ enstore pnfs --tags

.(tag)(file_family) = dcache
.(tag)(file_family width) = 1
.(tag)(file_family_wrapper) = cpio_odc
.(tag)(library) = 9940
.(tag)(storage_group) = test

SrW-rw-r-- 11 root sys 6 Jul 26 2001
/pnfs/test/xyz/srmtest/test_1 1/.(tag)(file_family)
-rwW-rw-r-- 11 root sys 1 May 5 2000

/pnfs/test/xyz/srmtest/test_1_1/.(tag)
(file_family_width)

SrW-rw-r-- 11 root sys 8 May 5 2000

/pnfs/test/xyz/srmtest/test_1_1/.(tag)
(file_family_wrapper)

-rW-rw-r-- 11 root sys 4 Jul 3 10:59
/pnfs/test/xyz/srmtest/test_1 1/.(tag)(library)
SrW-r--r-- 11 root sys 4 Jul 26 2001

/pnfs/test/xyz/srmtest/test_1 1/.(tag)(storage_group)
(minor reformatting done to enhance readability)

Enstore Commands

--xref <FILE_ NAME>
List cross-reference information (metadata) for specified file. (--info
is an alias for --xref.) The information includes:

e volume: storage media volume label

e location cookie: file position on tape (the number of the file
on tape)

e size: file size in bytes

e file family: file family

e original name: original name in /pnfs before any
move/copy command issued; i.e., the destination filename
given in the encp command used to copy the file to
Enstore

e map file: obsolete, but some older files may have a value here

e pnfsid file: unique id for the file as assigned by PNFS

e pnfsid map: obsolete, but some older files may have a value
here

e Dbfid: unique id for the file as assigned by Enstore (matches
layer 1)

e origdrive: id of drive used when file was written to media
(files generated prior to 10/2000, encp v2_5 or earlier, will
not have a value here)

e crc: CRC of the file (appears for files after 10/2003, using
encp v3_1 or greater)

Example:

$ enstore pnfs --xref a0l

volume: V03222

location_cookie: 0000_000000000_0006264

size: 24198

file family: dcache

original_name: /pnfs/fs/usr/test/xyz/srmtest/test_1 _1/a01
map_file:

pnfsid_file: 000500000000000000191030

pnfsid_map:

bfid: CDMS105889726300000

origdrive: stkenmvr5a:/dev/rmt/tps3din:4560000022

crc: unknown

--library
Returns the value of the library tag (the virtual library associated with
files in the directory) for the current pnfs directory. Example:

$ enstore pnfs --library

9940

49

Enstore Commands

3.5 enstore file (deprecated)

This command has been deprecated for users as of encp v3_2, and (along with

enstore volume) replaced with enstore info (see section Error:

Reference source not found).

This command communicates with the File Clerk (see section 8.1 File Clerk).

It returns information about a specified file or files on a specified volume.

Syntax:
% enstore file [--option [argument] ...]
Options:
-h, --help

Prints the options (i.e., prints this message). Example:

$ enstore file --help

Usage:

file [-h --bfid= --help --list= --ls-active= -

--bfid <BFID> get info of a file
-h, --help print this message

-usage]

--list <VOLUME_NAME> 1list the files in a volume
--ls-active <VOLUME_NAME> 1list active files in a volume

- -show-bad lists all bad files

--usage print short help message

--bfid <BFID>

Returns information (metadata) about the file corresponding to

the specified bfid.

You can get the bfid of a file from the enstore pnfs
--bfid <FILE_NAME> command (section Error: Reference
source not found); get the filename from searching PNFS

namespace.
Example:

$ enstore file --bfid CDMS105770745000000

{'bfid': 'CDMS105770745000000',
'complete_crc': 1191066979L,
'deleted': 'no',
'drive': 'stkenmvr7a:/dev/rmt/tps0din:4560000022"',
'external_label': 'V03222'
'location_cookie': 'G0OO_000000000_0005661",
'pnfs_mapname': '',

'/pnfs/fs/usr/test/xyz/srmtest/ar017983.0001phys_10",
'pnfsid': '000500000000000000190EA8",
'pnfsvid': '',

"pnfs_name0d':

Enstore Commands

50

'sanity_cookie': (65536L, 3203712884L),
'size': 197354833L}

--list <VOLUME_NAME>

Lists the files in the specified volume with their volume name,
bfid, size, location (file number) on volume, delete flag, and the
original filename in pnfs.

You can get the volume name from the enstore pnfs
command, using either --xref or --layer (section Error:
Reference source not found), or from the “external_label” field of
the enstore file --bfid <BFID> command (shown
above).

The enstore info --list <VOLUME_NAME> is an
alias for this command.

Example:

$ enstore file --list V03222

label bfid size location_cookie delflag

original_name

V03222 CDMS106503213600000 983803 0000_000000000_0011536 deleted
/pnfs/fs/usr/eagle/dcache-tests/274.dcache_page_p_27750

(This shows one of many lines appearing in the real output, and is
reformatted to two lines for readability.)

51

Enstore Commands

--Is-active <VOLUME_NAME>

Lists active files in a volume.

You can get the volume name from the enstore pnfs
command, using either --xref or --layer (section Error:
Reference source not found), or from the “external_label” field of
the enstore file --bfid <BFID> command (shown
above).

Example:

$ enstore file --l1ls-active V03222

/pnfs/fs/usr/eagle/dcache-tests/101.dcache_page_a_ 24401
/pnfs/fs/usr/eagle/dcache-tests/101.dcache_page_24401
/pnfs/fs/usr/test/stress-test/myfilel
/pnfs/fs/usr/test/stress-test/myfile3
/pnfs/fs/usr/test/stress-test/file128m-11

--show-bad

Lists all files that are currently unavailable due to media
problems. When a tape problem is discovered, the tape is sent to
the vendor for file recovery. In the interim, a cloned tape is made
available to users, with the bad files marked. This command
option lets you list the bad files. The output lists the tape
number, BFID, file size in bites, and pnfs path of file.

Example:

$ enstore info --show-bad

V00053 CDMS105770745000000 95530315
/pnfs/fs/usr/xyz/my_data/2004-4/.bad.F000xyz43_0000.mdaqg.root

We show only one output line, and it is displayed on two lines for
readability. Notice the “.bad.” at the front of the filename; this
is how the bad files are marked.

Replaced by: enstore info --show-bad.

--usage
Prints short help message. Example:

$ enstore file --usage

Usage:
file [-h --bfid= --help --list= --ls-active= --usage]

Enstore Commands

52

3.6 enstore volume (deprecated)

This command has been deprecated for users as of encp v3_2, and replaced
(along with enstore file)with enstore info (see section Error:
Reference source not found).

This command communicates with the Volume Clerk (see section 8.2 Volume
Clerk) to return information on data volumes.

Syntax:

% enstore volume [--option [argument] ...]

-h, --help
Prints this message (i.e., prints the options). Example:

$ enstore volume --help

Usage:
volume [OPTIONS]...
--gvol <VOLUME_NAME> get info of a volume in human readable
time
format
-h, --help prints this messge

--just <VOLUME_NAME> wused with --pvols to list problem
--1list <VOLUME_NAME> 1list the files in a volume
--1s-active <VOLUME_NAME> 1list active files in a volume

--1s-sg-count list all sg counts
--pvols list all problem volumes
--usage prints short help message

--vol <VOLUME_NAME> get info of a volume
--vols list all volumes

53

Enstore Commands

--gvol <VOLUME_NAME>

This is just like enstore volume --vol
<VOLUME_NAME>, except that this one prints human-readable
time fields (e.g., “declared”, “first_access” and “last_access”
fields). Example:

$ enstore volume --gvol V03332

{'blocksize': 131072,
'capacity_bytes': 64424509440L
'declared': 'Wed Jan 16 16:13:57 2002'
'eod_cookie': '0G000_000000000_0000044",
'external_label': 'Vv03332'
'first_access': 'Fri May 10 12:59:35 2002'
'last_access': 'Mon Oct 27 22:35:45 2003',
'library': '9940',
'media_type': '9940'
'non_del_files': 43,
'remaining_bytes': 1785262080L
'sum_mounts': 234,
'sum_rd_access': 213,
'sum_rd_err': O,
'sum_wr_access': 43,
'sum_wr_err': 0,
'system_inhibit': ['none', 'full'],
'user_inhibit': ['none', 'none']
'volume_family': 'cms.objy_data_files.cpio_odc',

'wrapper': 'cpio_odc'}

--just
Used with --pvols to list problem. See enstore
volume --pvols.

--list <VOLUME_NAME>

This is an alias for the enstore info --list
<VOLUME_NAME> command. See section Error: Reference
source not found.

--Is-active <VOLUME_NAME>
Lists original file names of active files in a volume. Example:

$ enstore volume --ls-active V03332

pnfs/cms/UserFederation/data/jetmet_production/data/Collections/jm_
Hit601_g125_UCSD/jme2_qqh126_11/EVDO.jet0102.DB

/
pnfs/cms/UserFederation/data/jetmet_production/data/TAssoc/jm_2x103
3PUjm602_TkMu_g125_UCSD/jm02_hlt15-20/EVD11.jet0102.DB

/
pnfs/cms/UserFederation/data/jetmet_production/data/Digis/jm_2x1033
PUjm602_TkMu_g125_UCSD/jm02-h1t0-15/EVD12.jet0102.DB

Enstore Commands

54

/
pnfs/cms/UserFederation/data/jetmet_production/data/Hits/jm_Hit601_
g125_UCSD/jm@2_h1t230-300/EVD12.jet0102.DB

--Is-sg-count <VOLUME_NAME>

Lists allocated tape counts by library and by storage group. If
“storage group” has value “none”, the negative number under
“allocated” gives the number of tapes that are available in the
robot, but not yet assigned to a storage group.

Example:

$ enstore volume --ls-sg-count V03332

library storage group allocated
9940 ktev 189
9940 1qgcd 150
9940 miniboone 132
9940 minos 109
9940 none -13
9940 patriot 20
9940 sdss 608
9940 test 28
9940 theory 70
CD-9940B cms 129

55

Enstore Commands

--pvols [--just <VOLUME_1> <VOLUME_2> ...]

Without - -just, this lists all problem volumes. With
--just followed by a space-separated list of volume names, it
lists only the problem volumes among the given list.

The columns returned are: volume name, primary status, primary
status time, secondary status, secondary status time. (The time
fields are relatively new; not all volumes will display them.)
Example:

$ enstore volume --pvols

==== readonly

LEGL10 none * readonly 0913-1540
LEGL98 none * readonly 0819-2329
==== full

V04845 none * full *
V04846 none 1023-1032 full *
V04847 none * full *
V04848 none * full *
V04849 none * full *
V04850 none * full 1016-2315
V04851 none * full 1017-0409

$ enstore volume --pvols --just V03332
(no sample output available)

Enstore Commands

--vol <VOLUME_NAME>
Returns detailed information about specified volume
Example:

$ enstore volume --vol V03332

{'blocksize': 131072,
'capacity_bytes': 64424509440L,
'declared': 1011219237.849051,
'eod_cookie': '0000_000000000_0000044",
'external_label': 'v03332',
'first_access': 1021053575.259737,
'last_access': 1067315745.238969,
'library': '9940',
'media_type': '9940',
'non_del_files': 43,
'remaining_bytes': 1785262080L,
'sum_mounts': 234,
'sum_rd_access': 213,
'sum_rd_err': 0,
'sum_wr_access': 43,
'sum_wr_err': 0,
'system_inhibit': ['none', 'full'],
'user_inhibit': ['none', 'none'],
'volume_family': 'cms.objy_data_files.cpio_odc',

'wrapper': 'cpio_odc'}

--vols

Lists all volumes with their available space, the system inhibits,
the library, the volume family (period-separated concatenation of
storage group, file family and file family wrapper) and any
comments.

Example:

$ enstore volume --vols

label avail. system_inhibit library vol_family
comment

V00053 1.19GB (none full) eagle
cms.objy data_files.cpio_odc

V00054 0.51GB (none full) eagle
cms.objy_data_files.cpio_odc

V00055 0.17GB (none full) eagle
theory.theory-canopy-C.cpio_odc

V00056 0.65GB (none full) eagle

theory.theory-canopy-D.cpio_odc

57

Enstore Commands

Chapter 4: Enstore Administrator
Commands

Enstore provides commands that allow you to communicate with various
components of the system. The basic syntax of all Enstore commands is
% enstore <command> [--option [argument] ...]

All options start with a double dash (--). The return codes are 0 (zero) for
success, non-zero for failure (currently all failures return number 1.)

The switches listed here are additional to those defined in the “The Enstore
and dCache User's Guide.”

4.1 enstore alarm

Syntax:
% enstore configuration [—--option [argument] ...]
Options:

W]

Usage:

-a,

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore configuration —--help

alarm [OPTIONS]...

——alive prints message if the server is up or down.

——client—-name <CLIENT NAME> set alarm client name

——condition <CONDITION> condition used when generating a remedy ticket

——do-alarm <DO_ALARM> turns on more alarms

——do-log <DO_LOG> turns on more verbose logging

——do-print <DO_PRINT> turns on more verbose output

——dont—-alarm <DONT_ALARM> turns off more alarms

——dont-log <DONT_LOG> turns off more verbose logging

——dont-print <DONT_PRINT> turns off more verbose output

——dump print (stdout) alarms the alarm server has in
memory

—-help prints this messge

—-message <MESSAGE> message along with raise option

——-raise raise an alarm

—-remedy_type <REMEDY_ TYPE> type used when generating a remedy ticket

—--resolve <KEY> resolve the previously raised alarm whose key
matches the entered value

——retries <ALIVE_RETRIES> number of attempts to resend alive requests

——root—error <ROOT_ERROR> error which caused an alarm to be raised [D:
UNKONWN]

——-severity <SEVERITY> severity of raised alarm (E, U, W, I, M, C)[D:

——timeout <SECONDS> number of seconds to wait for alive response
—-usage prints short help message

Enstore Administrator Commands 58

--client-name

When issuing an alarm from the command line this switch allows the user to
specify the name of the client. This overrides the default of
“ALARM_CLIENT.”

--dump

Dump the current list of alarms. This output goes to the file that stdout has
been redirected to for the alarm_server; not the stdout for the alarm_server
client.

$ enstore alarm —--dump

--message <MESSAGE>

Include the message in the alarm. This is intended to be the long description
of the problem. Used with --raise.

See --raise for an example.

--remedy-type <REMEDY_TYPE>

This is an FNAL specific switch. Possible values are:
e 'STK Enstore'
e 'DO Enstore'
e 'CDF Enstore'

for the remedy category MSS.

--rasise

Raise an alarm from the command line. See --message, --root-error and
--severity.

$ enstore alarm --raise —--severity E —-root-error \

“permission denied” --message \
“Unable to query tape robot via media changer stk.”

--resolve <KEY>

Remove the alarm with key KEY from the Enstore Active Alarms web page.
The key can be obtained from the Enstore Active Alarms web page or from
--dump.

$ enstore alarm --resolve 1044893163.67

--root-error <ROOT_ERROR>

Include text that gives the reason for the error. This is intended to be a short
string. Used with --rasise. The default string is “UNKNOWN.”

See --raise for an example.

Enstore Administrator Commands

--severity <SEVERITY>
The severity needs to be one of the following letters:

E - Error.

U — User Error.

W — Warning. This is the default.

I — Informational. Use of this severity is discouraged. Alarms are
supposed to indicate real problems.

M — Miscellaneous. Use of this severity is discouraged. Alarms are
supposed to indicate real problems.

C — E-mailable error. Some errors are only resolvable by the
administrators of the client machines (typically those that run encp).
This option will send them the alarm via e-mail. See the alarm server
configuration section 1.4.1 for configuration. If the error cannot be
e-mailed it defaults to placing it on the alarms page.

4.2 enstore backup

This command initiates the backup of the Enstore Database. The backup is
dumped into the directory specified in the configuration file in database |
db_dir and copied to the backup host defined in crons | backup_node
to the backup directory defined in crons | backup_dir.

Syntax:

% enstore backup

4.3 enstore configuration

Syntax:

o

% enstore configuration [—--option [argument] ...]

Options:

Enstore Administrator Commands 60

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore configuration —--help

Usage:
conf [OPTIONS]...

-a, —-—alive prints message if the server is up or down.
—-—config-file <CONFIG_FILE> config file to load
——-do-alarm <DO_ALARM> turns on more alarms
—-do-log <DO_LOG> turns on more verbose logging
——do-print <DO_PRINT> turns on more verbose output
——-dont-alarm <DONT_ALARM> turns off more alarms
——-dont-log <DONT_LOG> turns off more verbose logging
——dont-print <DONT_PRINT> turns off more verbose output
—-file-fallback return configuration from file if configuration
server is down
-h, —--help prints this messge
—-list-library-managers 1list all library managers in configuration
—-list-media-changers 1list all media changers in configuration

—-list-movers list all movers in configuration

—-load load a new configuration

—-—-print print the current configuration

—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
—-show print the current configuration in python format
——summary summary for saag

——threaded-impl <THREADED_ IMPL> Turn on / off threaded implementation
—-timeout <SECONDS> number of seconds to wait for alive response
——timestamp last time configfile was reloaded

—-—-usage prints short help message

--config-file <CONFIG_FILE>
Used with —load to tell the configuration server the configuration file to load.
For an example see --load.

--file-fallback

If the configuration server is not available (by default after 9 seconds), then
the configuration client will return the contents of the configuration file
located in the SENSTORE_CONFIG_FILE environmental variable. Use
--retries and--timeout to override the 9 second default. This switch is
expected to be used by Enstore installation scripts that may need to be run
before Enstore is started.

Must be used with either --show or --print.

$ enstore configuration —--file-fallback --show crons html_dir

/srv/enstore/www

61

Enstore Administrator Commands

--list-library-managers
Output to standard out the list of all configured library managers.

$ enstore configuration —--list-library-managers

9940

dlt.

test

nulll
CD-9940B
CD-LTO3_test
CD-LTO3

library manager
.library_manager
library_ manager
.library_manager
.library_manager
.library_manager
.library_manager
.library_manager

stkensrv4
stkensrv4
stkensrv4
stkensrv4
stkensrv4
stkensrv4

stkensrv3.

hos

.fnal.
.fnal.
.fnal.
.fnal.
.fnal.
.fnal.
fnal.

t

gov
gov
gov
gov
gov
gov
gov

--list-media-changers
Output to standard out the list of all configured media changers.

$ enstore configuration —--list-media-changers

media changer host type
nulll.media_changer stkensrv4.fnal.gov RDD_Medialoader
SL8500.media_changer stkensrv4.fnal.gov STK MedialLoader
stk.media_changer stkensrv4.fnal.gov STK MedialLoader
--list-movers
Output to standard out the list of all configured movers.
$ enstore configuration —--list-movers
mover host mc_device driver library

9940B27 .mover
9940B40 .mover
LTO3_13.mover
LTO3_06.mover
9940B16 .mover
LTO3_14 .mover
9940B26 .mover
9940B11 .mover
9940B21 .mover

994052 .mover
LTO3_12.mover
LTO3_08.mover

stkenmvr27a 0,1,10,2
stkenmvr40a 0,1,10,7
stkenmvrll3a 0,3,1,12
stkenmvrl06a 0,0,1,3
stkenmvrléa 0,0,10,18
stkenmvrll4a 0,3,1,13
stkenmvr26a 0,0,10,7
stkenmvrlla 0,0,10,16
stkenmvr2la 0,1,10,4

stkenmvr5a 0,0,10,9
stkenmvrll2a 0,1,1,1
stkenmvrl08a 0,2,1,13

['CD-LTO3.library manager', 'CD-LTO3 test.l

FTTDriver CD-9940B.library manager
FTTDriver CD-9940B.library manager
FTTDriver CD-LTO3.library manager
FTTDriver CD-LTO3.library manager
FTTDriver CD-9940B.library manager
FTTDriver CD-LTO3.library manager
FTTDriver CD-9940B.library manager
FTTDriver CD-9940B.library manager
FTTDriver CD-9940B.library manager
FTTDriver 9940.library manager
FTTDriver CD-LTO3.library manager
FTTDriver

ibrary manager']

--load

Tell the configuration server to reload the configuration file.

$ enstore configuration —--load -config-file \
SENSTORE_CONFIG_FILE

--print

Output to standard out the current Enstore configuration in a script friendly
format. If one or more KEY's are present then just that subsection of the
configuration is printed. See--show for a different output format. Example:

$ enstore conf —--print crons html_dir

crons.html_dir:/local/ups/prd/www_pages/enstore/

Enstore Administrator Commands 62

--show [KEY1 [KEY2] ...]]

Output to standard out the current Enstore configuration in a native python
format. If one or more KEYs are present then just that subsection of the
configuration is printed. See--show for a different output format. Example:

$ enstore conf --show blocksizes

{'sMM': 131072,
'9840': 131072,
'9940': 131072,
'9940B': 131072,
'DECDLT': 131072,
'LTO3': 131072,
'null': 131072,
'status': ('ok', None)}

--threaded-impl <THREADED_IMPL>

Parts of the configuration server have been made multi threaded for
performance reasons. Early on this proved to be unstable.
THREADED_IMPL should be set to 1 (default) for turning on the threading
or 0 for turning it off.

$ enstore configuration —--threaded-impl 1

--timestamp
Displays the date and time that the configuration was las (re)loaded into the
configuration server.

$ enstore configuration —--timestamp

Thu Jan 10 17:43:25 2008

4.4 enstore event_relay

Syntax:
% enstore event_relay [——options [arguments] ...]
Options:

--dump

Tells the event_relay to dump to contents of the list of processes that have
subscribed for event_relay messages. This output goes to the file that stdout
has been redirected to for the event_relay; not the stdout for the event_relay
client.

$ enstore event_relay —--dump

4.5 enstore file

Syntax:
% enstore file [--options [arguments] ...]

Enstore Administrator Commands

Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore file --help

Usage:

-a,

file [OPTIONS]...

——add <BFID> add file record (dangerous! don't try this at
home)

—--alive prints message if the server is up or down.

—-backup backup file journal -- part of database backup

--bfid <BFID> get info of a file

—-bfids <VOLUME_NAME> 1list all bfids on a volume

——deleted <YES/NO> used with --bfid to mark the file as deleted

——do—-alarm <DO_ALARM> turns on more alarms

——do-log <DO_LOG> turns on more verbose logging

——do-print <DO_PRINT> turns on more verbose output

——dont—-alarm <DONT ALARM> turns off more alarms

—-dont-log <DONT_LOG> turns off more verbose logging

——dont—-print <DONT_PRINT> turns off more verbose output

——find-all-copies <FILE> find all copies of this file

——find-copies <FILE> find the immediate copies of this file

——find-duplicates <FILE> find all duplicates related to this file

——find-original <FILE> find the immediate original of this file

——find-the-original <FILE> find the very first original of this file

—-—-get—-crcs <BFID> get crc of a file

—--help prints this messge

—-list <VOLUME_NAME> list the files in a volume

—-ls—-active <VOLUME_NAME> 1list active files in a volume

—-mark-bad <PATH> [BFID] Mark the file with the given filename as bad.
Include the bfid only if the file is a multiple

copy file.

—-modify <BFID> modify file record (dangerous!)

—-—-recursive restore directory

—-restore <BFID> [UID[:GID]] restore a deleted file with optional
uid:gid

——-retries <ALIVE_RETRIES> number of attempts to resend alive requests

——set—-crcs <SET_CRCS> set CRC of a file

—-show-bad list all bad files

—-show-state show internal state of the server

—--timeout <SECONDS> number of seconds to wait for alive response

——unmark-bad <PATH> [BFID] Unmark the file with the given filename as
bad. Include the bfid only if the file is a
multiple copy file.

—--usage prints short help message

Enstore Administrator Commands 64

--add <BFID> <keyl>=<valuel> <key2>=<value2> ...

Add file record to the Enstore DB. <BFID> must fit the bfid string pattern.
If <BFID> is “None”, then a new bfid will be assigned. The bfid is always
printed to the terminal; this is important for the cases where a new bfid is
assigned. If the bfid you want already exists use ——modify instead. There
is no normal use case for this switch.

$ enstore file --add None pnfs_name0=/pnfs/blah complete_crc=1 size=42 \
pnfsid=000D000000000023 deleted=y drive= external_label=TEST00 \
location_cookie=0000_00000000_000001 ''sanity_cookie=(42,1)"

bfid = WAMS121457893800000
To confirm that everything is accurate:

$ enstore file --bfid WAMS121457893800000

{'bfid': 'WAMS121457893800000,

‘complete_crc": 1L,

'deleted": 'yes',

'drive": ",

‘external_label': 'TESTO1',

'gid": -1,

"location_cookie': '0000_00000000_000001',

'pnfs_name0'": '/pnfs/mist/blah’,

‘pnfsid’: '000D000000000023,

'sanity_cookie": (42L, 1L),

'size": 42L,

'uid': -1,

'update': None}

Note: The fields shone in this example are the required fields. The gid and
uid fields are defaulted to -1 in this case.

Note: It is important to make sure that the volume is defined in Enstore
before using this command. If the volume does not exist, then commands
like “enstore info —--bfid <bfid>” will fail with “NO SUCH
FILE/BFID” because of the use of outer joins between the file and volume
tables. This also means that ——modi £y will not work, requiring this to be

fixed at the SQL level.

--backup
Backup the file journal.

$ enstore file —--backup

--bfids <VOLUME_NAME>
Deprecated. See enstore info--bfids . This file command has been modified
to point to the information server instead of the file clerk.

65

Enstore Administrator Commands

--deleted <yes | no>
Used with --bfid to mark a file as deleted.

$ enstore info —--bfid WAMS118954675400000 | grep deleted
'deleted': 'no’',

$ enstore file —--bfid WAMS118954675400000 —-deleted yes

$ enstore info —--bfid WAMS118954675400000 | grep deleted

'deleted': 'yes',

--find-all-copies <BFID>
List all the BFIDs that are multiple copies or originals of the specified BFID.
$ enstore file —--find-all-copies WAMS115254898100000

WAMS115254898100000
WAMS115254898700000

--find-copies <BFID>
List all the immediate copies of the specified BFID.

$ enstore file --find-copies WAMS115254898100000
WAMS115254898700000

$ enstore file --find-copies WAMS115254898700000

--find-duplicates <BFID>
List the original and all copies of the specified BFID.
$ enstore file —--find-duplicates WAMS115254898700000

WAMS115254898100000
WAMS115254898700000

$ enstore file —--find-duplicates WAMS115254898100000

WAMS115254898100000
WAMS115254898700000

--find-original <BFID>
List the immediate original to this BFID.

$ enstore file —--find-original WAMS115254898700000

WAMS115254898100000

--find-the-original <BFID>
List the master original to this BFID.

$ enstore file —--find-original WAMS115254898700000

WAMS115254898100000

Enstore Administrator Commands 66

--get-crcs <BFID>
Prints to standard out the crc information for the specified file.
$ enstore file —--get-crcs WAMS115254898700000

bfid 'WAMS115254898700000': sanity_cookie (10241L, 1458501222L), complete_crc
1458501222L

--mark-bad <PATH> [BFID]

Renames the file specified by <PATH> in PNFS to be
<DIRNAME>/.bad.<BASENAME>. This must be the current path in PNFS,
and not the original path stored in the Enstore DB. The Enstore database is
also updated to include a record that this file has been marked bad, but does
not also modify the original path.

Files should be marked bad when the file has been determined to be
unreadable from tape, but other files on the tape continue to read without
problems. If there is a problem with reading every file on the tape or the tape
itself then set the tape NOTALLOWED with the enstore
volume--not-allowed command in section 1.24. See also--unmark-bad and
--show-bad.

$ 1s /pnfs/test/my_dir/1KB_147

/pnfs/test/NULL/1KB_147

enstore file --mark-bad /pnfs/test/my_dir/1KB_147

$ 1s /pnfs/mist/my_dir/.bad.1lKB_147

/pnfs/test/NULL/ .bad.1KB_147

If the bad file is a multiple copy of the primary copy of the file, then we
need to specify the multiple copy"s BFID on the command line.

enstore file —--mark-bad \
/pnfs/test/my_dir/1KB_147 CDMS121891419900000

Enstore Administrator Commands

--modify <BFID>

Modify the database entry for the specified BFID. This command can create
many problems if not used with the utmost care. The quoting shown below
is not always necessary, however there are some PNFS ids that happen to
look like exponential numbers to python. The quoting shown overrides the
default attempt to interpret them as floating point numbers and instead treats
them as strings.

$ enstore file --bfid WAMS100888634200000

{'bfid': 'WAMS100888634200000',
'complete_crc': 0L,
'deleted': 'no',
'drive': 'rain:/dev/null:0',
'external_label': 'NULLO1l',
'gid': -1,
'location_cookie': '0000_000000000_0000142",
'pnfs_name0': '/pnfs/mist/NULL/1KB_100',
'pnfsid': '000100000000000000006350"',
'sanity_cookie': (1024L, OL),
'size': 1024L,
'uid': -1,
'update': None}

$ enstore file —--modify WAMS100888634200000 "gid=1530" \
"uid=9276" "pnfsid='000100000000000000006350""

bfid = WAMS100888634200000
$ enstore file —-bfid WAMS100888634200000

{'bfid': 'WAMS100888634200000',
'complete_crc': 0L,
'deleted': 'no',
'drive': 'testnode:/dev/null:0',
'external_label': 'NULLO1l',
'gid': 1530,
'location_cookie': '0000_000000000_0000142",
'pnfs_name0': '/pnfs/test/NULL/1KB_100',
'pnfsid': '000100000000000000006350"',
'sanity_cookie': (1024L, OL),
'size': 1024L,
'uid': 9276,
'update': None}

--recursive

Enstore Administrator Commands 68

--restore <BFID> [UID[:GID]]

This command will restore a file that has been removed from PNFS and has
been marked as deleted in the Enstore database. PNFS must be mounted and
the current effective user id must have the necessary permissions to
touch/open the file in the PNFS namespace. For all practical purposes, this
command will almost always be run as user root on the PNFS server itself;
though that is not a requirement.

$ enstore info —--bfid WAMS120224553900000

{'bfid': 'WAMS120224553900000',

'complete_crc': 0L,
'deleted': 'yes',

'drive': 'testnode:/dev/null:0',

'external_label': 'NULL10O',

'gid': 1530,

'location_cookie': '0000_000000000_0000005"',
'pnfs_name0': '/pnfs/test/NULL/restore_example_file',
'pnfsid': '00010000000000000007FF08"',
'sanity_cookie': (12559L, O0OL),

'size': 125591,

'uid': 9276,

'update': None}
$ 1ls /pnfs/test/NULL/restore_example_file
1s: /pnfs/test/NULL/restore_example_file: No such file or directory

$ enstore file —--restore WAMS120224553900000

$ 1s /pnfs/test/NULL/restore_example file

/pnfs/test/NULL/restore_example_file

--set-cres

--show-bad
List all files that are marked bad. See also--mark-bad and --unmark-bad.

$ enstore file --show-bad

NULLO1 WAMS103661998200000 1024 /pnfs/test/NULL/.bad.1KB_147

69

Enstore Administrator Commands

--unmark-bad <PATH> [BFID]

Unmark a file that has previously been marked as bad. This renames the file
in PNFS back to its original name and removes the file from the marked bad
list in the Enstore database. See also--mark-bad and--show-bad.

$ 1ls /pnfs/test/my dir/1KB_147

1s: /pnfs/test/NULL/1KB_147: No such file or directory

$ 1ls /pnfs/test/my dir/.bad.lKB_147

/pnfs/test/NULL/.bad.1KB_147

It is important to note in the following example command that the basename
of the file starts with .bad. and is not the original filename given to the
--mark-bad command.

enstore file —-unmark-bad /pnfs/test/my _dir/.bad.lKB_147

$ 1ls /pnfs/test/my dir/1KB_147

/pnfs/test/NULL/1KB_147

If the bad file is a multiple copy of the primary copy of the file, then we
need to specify the multiple copy's BFID on the command line.

For multiple copies, the path is not changed when the - - mark-bad is done.
Do not include the .bad. at the beginning of the file like primary files are
done.

enstore file —--unmark-bad \
/pnfs/test/my_dir/1KB_147 CDMS121891419900000

4.6 enstore info

As of encp v3_2, the user level command enstore info supersedes
enstore file and enstore volume. The admin level commands
enstore file and enstore volume are still used for modifying
commands.

Syntax:

% enstore info [—-—-option [argument] ...]

Options:

Enstore Administrator Commands 70

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore file --help

Usage:

-a,

_h,

info [OPTIONS]...

—-alive prints message if the server is up or down.
—--bfid <BFID> get info of a file

—-bfids <VOLUME_NAME> list all bfids on a volume

——check <VOLUME_NAME> check a volume

——do-alarm <DO_ALARM> turns on more alarms

——do-log <DO_LOG> turns on more verbose logging

——do-print <DO_PRINT> turns on more verbose output

——dont—alarm <DONT_ALARM> turns off more alarms

——dont-log <DONT_LOG> turns off more verbose logging

——dont-print <DONT_PRINT> turns off more verbose output

——file <PATH|PNFSID|BFID|VOL:LOC> get info of a file
——find-all-copies <BFID> find all copies of this file
——find-copies <BFID> find the immediate copies of this file
——find-duplicates <BFID> find all duplicates related to this file
——find-original <BFID> find the immediate original of this file
——find-same-file <BFID> find a file of the same size and crc
——find-the-original <BFID> find the very first original of this file
——get—-sg—-count <LIBRARY> <STORAGE_GROUP> check allocated count for

1lib, sg
——gvol <VOLUME_NAME> get info of a volume in human readable time
format
—-help prints this messge
—-history <VOLUME_NAME> show state change history of volume
--just used with —--pvols to list problem
—-labels list all volume labels

——list <VOLUME_NAME> list the files in a volume
——ls—-active <VOLUME_NAME> 1list active files in a volume

—-ls-sg—-count list all sg counts

—-—pvols list all problem volumes

——query <QUERY> query database

——retries <ALIVE_RETRIES> number of attempts to resend alive requests
—-show-bad list all bad files

——-show-copies <BFID> all copies of a file

—-show-file <BFID> show info of a file

——timeout <SECONDS> number of seconds to wait for alive response
——-usage prints short help message

—-vol <VOLUME_NAME> get info of a volume

—-—vols list all volumes

—--write—-protect-status <VOLUME_NAME> show write protect status

--bfids <VOLUME_NAME>
List all of the BFIDs on the specified volume.

$ enstore info --bfids TESTO1l

WAMS100456552800000
WAMS100456552900000
WAMS100456553000000
WAMS100456553100000
WAMS100456563700000
WAMS100463404700000
WAMS100463422700000
WAMS100463427300000
WAMS100463493300000
WAMS100463735500000

71

Enstore Administrator Commands

--check <VOLUME_NAME>
Prints a synopsis of the volume status.

$ enstore info --check TESTO1

TESTO1 0.52GB ['none', 'full'] ['none', 'none']

--find-same-file <BFID>
Lists all files in the Enstore DB with the same CRC and size as the file with
the specified BFID.

$ enstore info —-find-same-file WAMS115254898100000

TEST01 WAMS115401377100000 10241 0000_000000000_0000005 deleted
/pnfs/test/10KB_002

TEST01 WAMS115401417000000 10241 0000_000000000_0000007 deleted
/pnfs/test/10KB_002

TESTO01 WAMS115254898100000 10241 0000_000000000_0000010 active

/pnfs/test/10KB_002

--get-sg-count <LIBRARY> <STORAGE_GROUP>

Lists the number of volumes belonging to the indicated library and storage
group pairing.

$ enstore info -—-get-sg-count LTO3 test

rain zee 3

--gvol <VOLUME_NAME>
Same as --vol except that time values are displayed in human readable
format. See also--vol.

$ enstore info —--gvol TSTO001

{'blocksize': 131072,
'capacity bytes': 858993459200L,
'comment': '',
'declared': 'Fri Dec 21 14:31:20 2007',
'eod_cookie': '0000_000000000_0000639"',

'external_label': 'TSTO01',

'first_access': 'Fri Dec 21 16:03:09 2007',
'last_access': 'Sun Jan 20 10:33:53 2008',
'library': 'LTO4',

'media_type': 'LTO4',

'remaining bytes': 719404544L,

'si_time': ('Wed Dec 31 18:00:00 1969', 'Wed Dec 26 14:57:03 2007'),
'sum_mounts': 369,

'sum_rd_access': 707,

'sum_rd _err': 1,

'sum_wr_access': 638,

'sum_wr_err': O,

'system_inhibit': ['none', 'full'],
'user_inhibit': ['none', 'none'],
'volume_family': 'SSA.ssa-test.cpio_odc',
'wrapper': 'cpio_odc',

'write_protected': 'n'}

Enstore Administrator Commands 72

--history <VOLUME_NAME>
Prints a report of the status changes to the volume.

$ enstore info --history TST001

2007-12-26 14:57:03.083077 system_inhibit[1] full

--just <problem_type_1> <problem_type_2> ...
When used with--pvols to display one type of problem volumes. The most
common values for problem types include (but not limited to):

1. migrated

2. readonly

3. full

4. NOACCESS

5. NOTALLOWED

6. duplicated

$ python info_client.py —--pvols —--just migrated

==== migrated

V02140 0.90GB (none 0509-1704 migrated 0811-0008) 9940
sdss.sdss_mt.cpio_odc => V08585

Vv02141 0.90GB (none 0509-1704 migrated 0811-0722) 9940
sdss.sdss_mt_2c.cpio_odc => V08585 VOB250

This is really just a sorting of system inhibits that are not 'none'. Full
volumes are not considered problem volumes unless another condition (i.e.
NOACCESYS) is also there.

--labels
List all the volume names.

$ enstore info -labels

TESTO0
TESTO00.deleted
TESTO1
TEST02

--query <SQL query>

Allows the user to issue an sql command to the database. Use of this
command requires knowledge of the database scheme.

$ enstore info —--query "select label from volume limit 10;"

label

JL4742

JL4742 .deleted
rain:zee.shortcut_test.null:1116865327606
NULLO2

NULLO3

NULLO4

NULLO5

STORM1

STORM4 .deleted

UPBO018

73

Enstore Administrator Commands

--write-protect-status <VOLUME_NAME>
Prints in the write protect status is OFF, ON or UNKNOWN.

$ enstore info —--write-protect-status TSTO001

TST001l write-protect OFF

4.7 enstore inquisitor

The enstore inquisitor commands have enstore sched as an alias.

Syntax:

o

% enstore inquisitor [--options [arguments]
Options:

-1

Enstore Administrator Commands

74

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore file —--help

Usage:

-a,

-h,

inquisitor [OPTIONS]...

--alive prints message if the server is up or down.
——-do-alarm <DO_ALARM> turns on more alarms
—-do-log <DO_LOG> turns on more verbose logging

——do-print <DO_PRINT> turns on more verbose output

——dont-alarm <DONT_ALARM> turns off more alarms

—-dont-log <DONT_LOG> turns off more verbose logging

——dont-print <DONT_PRINT> turns off more verbose output

——down <SERVER[, SERVER]> servers to mark down

——dump print (stdout) state of servers in memory

—-—get—-last-alive <SERVER[, SERVER]> return the last time a heartbeat
was received by the inquisitor for the listed
servers

—-get-max—-encp-lines return number of displayed lines on the encp
history web page

—--get-refresh return the refresh interval for inquisitor
created web pages

—-—get—-update-interval return the interval between updates of the
server system status web pages

—-help prints this messge

——is-up <SERVER> check if <server> is up

—-max—encp-lines <NUM _LINES> set the number of displayed lines on the
encp history web page

—--nooutage <SERVER[, SERVER]> remove the outage check from the SAAG
page for the specified servers

—-nooverride <SERVER[, SERVER]> do not override the status of the
specified servers

——-outage <SERVER[, SERVER]> set the outage check on the SAAG page for
the specified servers

——-override <SERVER[, SERVER]> override the status of the specified
servers with the saagstatus option

—-reason <STRING> information associated with a server marked down
or with an outage

—--refresh <SECONDS> set the refresh interval for inquisitor created
web pages

—-retries <ALIVE_RETRIES> number of attempts to resend alive requests

—-saagstatus <STATUS> status to use for override

——show print (stdout) the servers scheduled down, known
down, seen down and overridden

—-subscribe subscribe the inquisitor to the event relay

——time <STRING> information associated with a server marked down

or with an outage

—-timeout <SECONDS> number of seconds to wait for alive response

——-up <SERVER[, SERVER]> servers to mark up

—-update update the server system status web page

—-update—and-exit update the server system status web page and
exit the inquisitor

—-update-interval <SECONDS> set the interval between updates of the
system servers status web page

--usage prints short help message

75

Enstore Administrator Commands

--down <SERVER[,SERVER]>
Mark a server as known down. Valid names include all entities that appear
on the Mass Storage Status at-a-Glance. See also--reason, --up and --show.

$ enstore inquisitor --down LTO3.library manager

--dump
This output goes to the file that stdout has been redirected to for the
inquisitor; not the stdout for the inquisitor client.

$ enstore inquistor —--—-dump

--get-last-alive <SERVER[,SERVER]>
Show the last time the requested server(s) sent a heartbeat message.

$ enstore inquisitor --get-last-alive rain.library_manager

rain.library manager Wed Mar 26 16:14:25 2008

--get-max-encp-lines

Show the number of lines displayed on the encp History web page. See
--max-encp-lines to set this value.

$ enstore inquisitor --get-max-encp-lines

250

--get-refresh
Show the refresh interval in seconds for inquisitor created web pages.
See--refresh to set this value.

$ enstore inquisitor —--get-refresh

3600

--get-update-interval

Show the update interval in seconds between updates of the server system
status web pages. See also --update-interval.

$ enstore inquisitor —--get-update-interval

20

--1s-up <SERVER>
Show if a server is up. This switch is script friendlier than --show.

$ enstore inquisitor —--is-up LTO4_0.mover

no

Enstore Administrator Commands 76

--max-encp-lines <NUM_LINES>

Sets the maximum number of lines on the encp History web page. See also
--get-max-encp-lines.

$ enstore inquisitor —--get-max-—-encp-lines

250

$ enstore inquisitor --max-encp-lines 251
$ enstore inquisitor —--get-max-—-encp-lines

251

--nooutage <SERVER[,SERVER]>
Removes the specified servers from the list of scheduled down servers. See
also --outage.

$ enstore inquisitor —--nooutage LTO4_0.mover

--nooverride <SERVER[,SERVER]>
See also --override.

--outage <SERVER[,SERVER]>
Adds the specified servers to the list of scheduled down servers. See also
--nooutage.

$ enstore inquisitor —--outage LTO4_0.mover

--override <SERVER[,SERVER]>
See also --nooverride.

--reason <STRING>
Adds a comment to explain why a server is down or has a scheduled outage.
See also --up, --outage and--show.

$ enstore inquisitor —-down LTO4_0.mover -reason “tape drive
investigation”

--refresh <SECONDS>
Sets the number of seconds between updates on inquisitor created web pages.
See also--get-refresh.

$ enstore inquisitor --get-refresh
3600

bash-3.00$ enstore inquisitor —--refresh 5000

bash-3.00$ enstore inquisitor --get-refresh

5000

--saagstatus <STATUS>

77

Enstore Administrator Commands

--show
Show what Enstore severs are down or scheduled to be down.

$ enstore inquisitor —--show

Enstore Items Scheduled To Be Down

Enstore Items Known Down

DLT1.mover : fan to noisy

Enstore Items Down and the Number of Times Seen Down

Drivestat Server : 34853
DLT1.mover : 61020

--subscribe
Subscribe the inquisitor to the event_relay.

$ enstore inquisitor —--subscribe

--time <STRING>

--up <SERVER[,SERVER]>

Mark an Enstore server as being up. Valid names include all entities that
appear on the Mass Storage Status-at-a-Glance. See also--reason, --down and
--show.

$ enstore inquisitor —--down LTO3.library manager

--update
Tells the inquisitor to update the Enstore Server Status web page now instead
of waiting for the next update interval. See also --update-and-exit.

$ enstore inquisitor —--update

--update-and-exit

Tells the inquisitor to update the Enstore Server Status web page now instead
of waiting for the next update interval. After the page is updated the
inquisitor quits. See also --update.

$ enstore inquisitor —--update-and-exit

Enstore Administrator Commands 78

--update-interval <SECONDS>
Sets the number of seconds between updates of the Enstore Server Status
web page. See also --get-update-interval.

$ enstore inquisitor —--get-update-interval

20

$ enstore inquisitor --update-interval 30

$ enstore inquisitor —--get-update-interval

30

4.8 enstore library

Syntax:
% enstore library [-—-options [arguments] ...] \
<library>

Options:

--delete-work <UNIQUE_ID>
Remove the request with the specified unique ID from the queue.

$ enstore library —-—-get—queue '' stk.library_manager

Pending write requests

testnode.fnal.gov stk.library _manager enstore /home/enstore/testfile
/pnfs/test/xyz/testfile P 0 FF zoo FF. W 1

Pending read requests: 0

Pending write requests: 1

Active read requests: 0

Active write requests: 0

{'status': ('ok', None)}

$ enstore library —--delete-work \
testnode. fnal.gov-1202315917-17575-0 stk

{'status': ('ok', 'Work deleted')}
$ enstore library —-—-get—-queue '' stk

Pending read requests: 0
Pending write requests: 0
Active read requests: 0
Active write requests: 0
{'status': ('ok', None)}

--priority <UNIQUE_ID> <PRIORITY>
Set the priority for the request with the specified unique id.

$ enstore library —--priority \
testnode. fnal.gov-1202315917-17575-0 5 stk.library manager

{'status': ('ok', 'Priority changed')}

79

Enstore Administrator Commands

--rm-active-vol <VOLUME>
This command removes the volume from the list of active volumes.

This command should only be used when it is known that the tape is not
located in the assigned tape drive. This command is usually used after an
error occurred and the tape needed to be ejected manually from the tape
drive. The library manager will not schedule requests for a different tape
drive for a tape while it believes the tape is still in a drive.

$ enstore library —--rm-active-vol TESTO0l1lLl stk.library manager

--rm-suspect-vol <VOLUME>

This command removes the volume from the suspect volume list. This list
keeps track of volume with mover combinations that result in media errors.
The library manager will not assign a suspect volume to its matching suspect
movers.

$ enstore library —--rm-suspect-vol TST00l1 stk.library manager

--start-draining <LIBRARY STATE>
Tell the library to stop assigning requests to movers. The normal state is
unlocked, however it can be set to:

e lock — Stop assigning any new requests to movers. If a new encp
request is received return an error.

e ignore - Stop assigning any new requests to movers. If a new encp
request is received return a success message to encp, but do not insert
the request into the queue.

e pause - Stop assigning any new requests to movers. If a new encp
request is received return a success message to encp and put the
request at the end of the queue.

e noread — If a read request is received an error is returned to encp. If
a write request is received it is processed normally.

e nowrite — If a write request is received an error is returned to encp.
If a read request is received it is processed normally.

See --stop-draining and --status.

$ enstore library --status aml2.library manager
LM state:unlocked

$ enstore library --start-draining lock aml2

$ enstore library --status aml2

LM state:locked

Enstore Administrator Commands 80

--status

Print the current state of the library manager: It will be one of: unlocked,
locked, pause, ignore, noread or nowrite. See--start-draining and--stop
draining for more information and examples.

--stop-draining

Set the state of the library manager back to its default state. Most often this
is the unlocked state. A different default state can be set in the configuration;
see section 5.4. If this is set in this libraries configuration, then it will be set
back to that value.

$ enstore library --status SL8500.library_manager

LM state:nowrite

$ enstore library —--stop-draining SL8500

$ enstore library --status SL8500

LM state:unlocked

--vols
Reports information on the current state of the active volumes and their
currently associated movers.

$ enstore library --vols CDF-LTO3

label mover tot.time status system_inhibit
rqg. host updated volume family

IAD655 LTO3_24 .mover 28 IDLE (0) (none

full) fcdfdatal0? 02-06-08 14:24:31 cdf.cdfpstn.cpio_odc

IAB451 LTO3_01.mover 286 HAVE_BOUND (30) (none

full) fcdfdata098 02-06-08 14:24:54 cdf.cdfptnt.cpio_odc

IAD726 LTO3_31.mover 664 ACTIVE-READ (4) (none

full) fcdfdatalO5 02-06-08 14:24:50 cdf.cdfpstn.cpio_odc

4.9 enstore log

Syntax:
% enstore log [--options [arguments] ...]
Options:

Enstore Administrator Commands

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore log —--help

Usage:
log [OPTIONS]...

-a, —-—alive prints message if the server is up or down.
——-client-name <CLIENT_NAME> set log client name
——-do-alarm <DO_ALARM> turns on more alarms
—-do-log <DO_LOG> turns on more verbose logging
——do-print <DO_PRINT> turns on more verbose output
——dont-alarm <DONT_ALARM> turns off more alarms
—-dont-log <DONT_LOG> turns off more verbose logging
——dont-print <DONT_PRINT> turns off more verbose output
—--get-last-logfile-name return the fname of yesturdays log file
—-—get—-logfile—name return the name of the current log file
—-get-logfiles <PERIOD> return the last 'n' log file names (today,

week, month, all)

-h, —--help prints this messge
--message <MESSAGE> log a message
—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
—-timeout <SECONDS> number of seconds to wait for alive response
—--usage prints short help message

--client-name

When used with--message this switch will set the client name recorded in the
log file. See--message for an example. The default name, when this switch
is not used is, LOG_CLIENT.

--get-last-logfile-name
Return the name of yesterdays log file.
$ enstore log —-get-last-logfile—name

/diska/enstore-log/LOG-2008-02-05

--get-logfile-name
Return the name of todays log file.
$ enstore log —get-logfile—name

/diska/enstore-1log/L0OG-2008-02-06

--get-logfiles

--message <MESSAGE>
Send a message to the log server to be placed in the log file. See
--client-name.

$ enstore log -message “This is a test message.” —--client-name
“MY_SCRIPT”

Enstore Administrator Commands 82

4.10 enstore media

Syntax:
% enstore media [--options [arguments] ...] \
<media_changer>
Options:
-h, --help
Prints the options (i.e. Prints this message). Example:
$ enstore media --help
Usage:
media [OPTIONS]...
-a, —-—alive prints message if the server is up or down.
——dismount <EXTERNAL_LABEL> <DRIVE>
—--do-alarm <DO_ALARM> turns on more alarms
—-do-log <DO_LOG> turns on more verbose logging
——do-print <DO_PRINT> turns on more verbose output
——dont-alarm <DONT_ALARM> turns off more alarms
—-dont-log <DONT_LOG> turns off more verbose logging
——-dont-print <DONT_PRINT> turns off more verbose output
--get-work
-h, —--help prints this messge
--list list all media changers in configuration
—-list-clean List cleaning volumes.
—-list-drives List all drives.
—--list-slots List all slot counts.
—-list-volumes List all volumes.
—-max-work <MAX WORK>
—-mount <EXTERNAL_LABEL> <DRIVE>
—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
—-show
—--show-drive <DRIVE>
—-show-robot
——show-volume <VOLUME> <MEDIA TYPE> Returns information about a
volume.
—--timeout <SECONDS> number of seconds to wait for alive response
—-—-usage prints short help message
--dismount
Move a volume from the mouth of a drive to a slot in the media library. See
also --mount.
$ enstore media --dismount TST001 LTO-800G stk.media_changer

83

Enstore Administrator Commands

--get-work
Print various pieces of information about the current list of outstanding media
relocation requests.

$ enstore media --get-work SL8500.media_changer

{'max_work': 10,
'status': ('ok', 0, None),

'worklist': [('mount', 'VOF764', '0,3,1,1'),
('mount', 'V0G033', '0,2,1,12'"),
('mount', 'VOG586', '0,1,1,12'"),
('dismount', 'vOoG014', '0,1,1,1'"),

('mount', 'VOG365', '0,0,1,3'"),
('dismount', 'V0OG727', '0,3,1,13')1]}

-list-clean
Report on the number of cleanings remaining for cleaning tapes.

$ enstore media —--list-clean SL8500G1l.media_changer

volume type max current remaining
CLNOO6 LTO-CLNU 50 50 0
CLNOO07 LTO-CLNU 50 50 0
CLNOO8 LTO-CLNU 50 50 0
CLNOO09 LTO-CLNU 50 45 5
CLNO10 LTO-CLNU 50 28 22
CLNO11 LTO-CLNU 50 1 49
CLNO13 LTO-CLNU 50 50 0
CLNO14 LTO-CLNU 50 16 34
CLNO15 LTO-CLNU 50 20 30

--list-drives
List the available drives and some information about them.

$ enstore media --list-drives stk.media_changer

name state status type volume
0,0,10,0 online available T9940B
0,0,10,1 online available T9940B
0,0,10,2 online available T9940A
0,0,10,4 online available T9940B
0,0,10,5 online available T9940B
0,0,10,6 online in use T9940B VOB915
0,0,10,7 online in use T9940B V02688

--list-slots
Report on the current number of media slots that are used and empty.

$ enstore media --list-slots aml2.media_changer

location media type total free used disabled
STO1 DECDLT 4320 4294 26 0
ST02 3480 4800 1603 3197 0
STO03 3480 4800 82 4718 0

Enstore Administrator Commands 84

--list-volumes
List the available volumes and some information about them. This command
can take a while (sometimes several minutes) to complete.

$ enstore media --list-volumes aml2.media_changer

volume type state location
270PROL1 3480 (o]
797PROL1 3480 (o]
835PROL1 3480 (o]
836PROL1 3480 (o]
899PROL1 3480 (o]
CA2530 DECDLT (o]
CA2531 DECDLT (o]
CA2532 DECDLT (o]

For the AML2 media changers:
e The location column is left blank.

e Some tapes are reported backwards. 270PROLI from above is really
PRO270L1, but CA2530 really is CA2530.

--max-work <MAX_ WORK>

Override the default max work parameter with the user supplied value. See
also --get-work.

$ enstore media --get-work test.media_changer

{'status': ('ok', 0, None), 'max_work': 7, 'worklist': []}

bash-3.00$ enstore media —--max-work 10 test.media_changer

bash-3.00$ enstore media -—-get-work test.media_changer

{'status': ('ok', 0, None), 'max_work': 10, 'worklist': []}

--mount <EXTERNAL LABEL> <DRIVE>
Move a volume from the its media slot and insert it into a drive. See also
--dismount.

$ enstore media -mount TST001 0,5,1,0 SL8500.media_changer

--show
Determine if the robot is available and report the status back to the user.
$ enstore media --show SL8500.media_changer

2008-02-06:16:27:21 4.320000 ('ok', O, 'query server => 0,run ,
4.320000")

Enstore Administrator Commands

--show-drive <DRIVE>
Show information about a specific drive.

$ enstore med —--show-drive DG4A aml2

name state status type volume
DG4A up 0 6380/7480

For the AML2 media changer:
e The (letter) O status means the tape is Occupied in its slot.
e The M status means that it is mounted in a drive.
For the STK media changer:
e home status means that it is located in it slot.
e In use status means that is is mounted in a drive.

--show-robot
Reserved to show the state of the robot in a more generic format than --show.
Currently is an alias to --show.

--show-volume
Show information about a specific volume.

$ enstore med —--show-volume PRO270L1 DECDLT aml2.media_changer

volume type state location
PRO270L1 3480 (o]

For the AML2 media changers:
e The location column is left blank.
e The (letter) O status means the tape is Occupied in its slot.
e The M status means that it is mounted in a drive.
For the STK media changer:
e home status means that it is located in it slot.
e In use status means that is is mounted in a drive.

4.11 enstore monitor

Without any switches or arguments, enstore monitor contacts all
Enstore machines to run a simple network rate test. The results are then sent
to the monitor server running on the same machine as the configuration server
and web server. If the monitor server on the configuration server and web
server node is not running then this command will eventually timeout, but will
run very slowly.

Syntax:

% enstore monitor [—-—-options [arguments] ...]

Options:

Enstore Administrator Commands 86

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore monitor —--help

Usage:
mon [OPTIONS]...
-a, —-—alive prints message if the server is up or down.
-h, —--help prints this messge
—-host <HOSTIP> selects a single host
—--html-gen-host <HTML_GEN_HOST> ip/hostname of the html server
——port <PORT> selects a port
—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
——summary summary for saag
—-timeout <SECONDS> number of seconds to wait for alive response
—-—-usage prints short help message
—--verbose <VERBOSE> print out information.
--host <HOSTIP>

Specify a single host to run the rate test with. By default all Enstore hosts are
contacted. HOSTIP is allowed to be a host name or IP address.
$ enstore monitor —--host stkensrv2.fnal.gov

Trying stkensrv2.fnal.gov
Network rate measured at 11.16 MB/S recieving and 11.25 MB/S sending.

--html-gen-host <HTML_GEN_HOST>

This switch allows for the user to override the default hostname of the
primary monitor server. Normally the rate results are sent to the monitor
server running on the same node as the configuration server and the web
Server.

$ enstore monitor —--host stkensrv2.fnal.gov —--html-gen-host
gccensrvl. fnal.gov

Trying stkensrv2.fnal.gov
Network rate measured at 11.19 MB/S recieving and 11.24 MB/S sending.

--port
This switch is needed to use communicate with a monitor server that was
started using a different port number than the default 7499.

$ enstore monitor —--host stkensrv2.fnal.gov —-port 7499

Trying stkensrv2.fnal.gov
Network rate measured at 11.18 MB/S recieving and 11 MB/S sending.

--summary
This switch outputs a python dictionary that is used internally by the enstore
network command.

4.12 enstore mover

Syntax:

Enstore Administrator Commands

% enstore mover [—-—-options [arguments] ...] <mover>
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore mover --help

Usage:

mov [OPTIONS]... mover_name

-a, ——alive prints message if the server is up or down.
—--clean-drive clean tape drive
——do—-alarm <DO_ALARM> turns on more alarms
——do-log <DO_LOG> turns on more verbose logging
——do-print <DO_PRINT> turns on more verbose output
——dont—alarm <DONT_ ALARM> turns off more alarms
—-dont-log <DONT_LOG> turns off more verbose logging
——dont-print <DONT_PRINT> turns off more verbose output
——down set mover to offline state
——dump get the tape drive dump (used only with M2

movers)

-h, —--help prints this messge
--list list all movers in configuration
—-mover_dump send mover internals to stdout
—--notify <E_MAIL_ADDRESS> send e-mail. Used with --dump option only
——offline set to offline state
—-online set to online state

—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
—--sendto <E_MAIL_ADDRESS> send e-mail. Used with --dump option only

——status print mover status

—--timeout <SECONDS> number of seconds to wait for alive response
--up set mover to online state

—--usage prints short help message

--warm-restart gracefully restart the mover

--clean-drive
Clean the drive associated with the mover.

$ enstore mover —--clean-drive 9940B27.mover

--down

Set the mover to the offline state. This will prevent the mover from
requesting additional work items from the library manager. This is the same
command as --offline.

$ enstore mover —--down LTO3 06.mover

--dump

Output the tape drive dump. This output goes to the file that stdout has been
redirected to for the mover; not the stdout for the mover client. Only works
with Mammoth 2 tape drives.

$ enstore mover —--dump M201l.mover

Enstore Administrator Commands 88

--mover_dump
Output the mover internals dump. This output goes to the file that stdout has
been redirected to for the mover; not the stdout for the mover client.

$ enstore mover —--mover—dump 9940B27.mover

--notify <E_ MAIL_ADDRESS>

--offline

Set the mover to the offline state. This will prevent the mover from
requesting additional work items from the library manager. This is the same
command as --down.

$ enstore mover -offline LTO3 06 .mover

--online

Set the mover to the online state. This will allow the mover to begin
requesting additional work items from the library manager. This is the same
command as --up.

$ enstore mover -online 9940B27.mover

--sendto <E_MAIL_ADDRESS>

89

Enstore Administrator Commands

--status
Prints in native python format current status and/or state information about
the mover.

$ enstore mov --status LTO3_06.mover

{'buffer': 'Buffer 67108864 79691776 2621440000',

'buffer max': 2621440000L,

'buffer min': 67108864L,

'bytes_buffered': 79691776,

'bytes_read': 347280136L,

'bytes_read_last': 347280136L,

'bytes_to_transfer': 2440004730L,

'bytes_written': 267386880L,

'client': '131.225.189.74°',

'current_location': 6,

'current_volume': 'VOI1l77',

'default_dismount_delay': 20,

'drive_id': 'ULTRIUM-TD3',

'drive_sn': '1210116666"',

'drive_vendor': 'IBM',

'files':
('cmsstor74.fnal.gov:/storage/datal/write-pool-1/data/00070000000000000FBD84E
8'1

'/pnfs/fnal.gov/usr/cms/WAX/11/store/mc/2008/2/6/TaS-W0jet—alpgen—-Skim_01_AOD
SIM/0003/64C34427-68D5-DC11-AF3B-0018F3D09702.root '),

'last_error': ('ok', None),

'last_location': 34,

'last_volume': 'VOE330',

'max_dismount_delay': 600,

'mode': 'WRITE',

'rate of network': 54970350.576162718,

'rate of tape': 71208384.297553152,

'state': 'ACTIVE',

'status': ('ok', None),

'successful_writes': 56,

'time_in_state': 6.3608489036560059,

'time_stamp': 1202403301.7609749,

'transfers_completed': 189,

'transfers_failed': 0}

__up

Set the mover to the online state. This will allow the mover to begin
requesting additional work items from the library manager. This is the same
command as --online.

$ enstore mover -up 9940B27.mover

--warm-restart

Using this switch will instruct the mover to restart. If a file transfer is
currently in progress, the restart is delayed until the transfer is completed, the
volume is ejected and the volume is put away.

$ enstore mover -warm-restart --M201l.mover

Enstore Administrator Commands 90

4.13 enstore network

Syntax:
% enstore network [—-—options [arguments] ...]
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore network —--help

Usage:
network [-h —--help --html-gen-host= —--usage]
-h, --help prints this messge
—--html-gen-host <NODE_NAME> ip/hostname of the html server
—-—-usage prints short help message

--html_gen_host
See section 1.11 for the enstore monitor —--html-gen-host
command.

4.14 enstore pnfs

Syntax:
% enstore pnfs [--options [arguments] ...]
Options:

91

Enstore Administrator Commands

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore pnfs —--help

Usage:

-h,

pnfs [OPTIONS]...

--bfid <FILENAME> lists the bit file id for file
—-—-cat <FILENAME> [LAYER] see --layer

——const <FILENAME>

——counters <FILENAME>

——countersN <DBNUM> (must have cwd in pnfs)
——cp <UNIXFILE> <FILENAME> <LAYER> echos text to named layer of the
file

——cursor <FILENAME>
—--database <FILENAME>

——databaseN <DBNUM> (must have cwd in pnfs)

——down <REASON> creates enstore system-down wormhole to prevent
transfers

——dump dumps info

——duplicate [FILENAME] [DUPLICATE_FILENAME] gets/sets duplicate file
values

——echo <TEXT> <FILENAME> <LAYER> sets text to named layer of the file

——file-family [FILE_FAMILY] gets file family tag, default; sets file
family tag, optional

——file-family-width [FILE FAMILY WIDTH] gets file family width tag,
default; sets file family width tag, optional

——-file-family-wrapper [FILE FAMILY WRAPPER] gets file family wrapper
tag, default; sets file family wrapper tag,

optional
—-filesize <FILE> print out real filesize
—-help prints this messge
——id <FILENAME> prints the pnfs id
——info <FILENAME> see —-xref
——io <FILENAME> sets io mode (can't clear it easily)

—-layer <FILENAME> [LAYER] 1lists the layer of the file

—-library [LIBRARY] gets library tag, default; sets library tag,
optional

—--1s <FILENAME> [LAYER] does an ls on the named layer in the file

—-mount-point <FILENAME> prints the mount point of the pnfs file or

directory

——nameof <PNFS_ID> prints the filename of the pnfs id (CWD must be
under /pnfs)

——-parent <PNFS_ID> prints the pnfs id of the parent directory (CWD
must be under /pnfs)

——-path <PNFS_ID> prints the file path of the pnfs id (CWD must be

under /pnfs)

——-position <FILENAME>

—-rm <FILENAME> <LAYER> deletes (clears) named layer of the file

—-showid <PNFS_ID> prints the pnfs id information

——-size <FILENAME> <FILESIZE> sets the size of the file

—--storage—-group [STORAGE_GROUP] gets storage group tag, default; sets
storage group tag, optional

—--tag <TAG> [DIRECTORY] 1lists the tag of the directory

—-—tagchmod <PERMISSIONS> <TAG> changes the permissions for the tag;use
UNIX chmod style permissions

—--tagchown <OWNER> <TAG> changes the ownership for the tag; OWNER can
be 'owner' or 'owner.group'

——tagecho <TEXT> <TAG> echos text to named tag

--tagrm <TAG> removes the tag (tricky, see DESY documentation)
—--tags [DIRECTORY] lists tag values and permissions

--up removes enstore system—-down wormhole

—-—-usage prints short help message

—--xref <FILENAME> lists the cross reference data for file

Enstore Administrator Commands 92

--const <FILENAME>
Outputs constant information from pnfs for a target file or directory in PNFS.

$ enstore --const /pnfs/test/mydir

MD2_P_VERSION=30109
MD2_RECORD_LENGTH=1012
MD_MAX NAME_ LENGTH=200
MD_HASH_SIZE=128

MAX BODY_ SIZE=928

MAX TAG_NAME_SIZE=62
TAG_DATA_SIZE=762
HASH HANDLES=66

HASH POINTERS=77

DATA POINTERS=77
DIR_ITEMS=3

DATA UNITS=928

This shell command has the same result.

$ cat “/pnfs/test/. (const) (NULL)"”

93

Enstore Administrator Commands

--counters <FILENAME>
Outputs constant information from pnfs for a target file or directory in PNFS.

$ enstore pnfs —--counters /pnfs/test/mydir

mist=1
time=1202415188
getroot=0
get_record=87
getattr=162567
lookup=53634
mkdir=0
setattr=269
rmdir=0
readdir=438
mkfile=63
rmfile=66
rename=35
mklink=0
readlink=42
readdata=4089
writedata=66
setsize=0
setperm=0
truncate=0
rmfromdir=32
addtodir=32
chparent=0
delobject=0
forcesize=0
NULL=0
looponly=32
command=0
get_chain=0
find_id=64
mod_link=64
setattrs=0
rmfromdirpos=0
mod_flags=0

This shell command has the same result.

$ cat “/pnfs/test/mydir/. (get) (counters)”

--countersN <DBNUM>

Enstore Administrator Commands 94

--cp <UNIXFILE> <FILENAME> <LAYER>

Copies a text file into the named layer of the specified file. In the following
example, the contents of /tmp/L4 are copied into layer 4 of the file
/pnfs/test/mydir/somefile. This is similar to what --echo does, but makes it
easier to write multi line output to the layer.

To see what we currently have and what we believe we will want to replace
the layer information with. Note the difference between the volume name
and the location.

$ cat /tmp/L4

TESTO1
0000_.000000000_0000397
1024

my file family
/pnfs/test/mydir/somefile

000100000000000000018820

WAMS103661998200000
testnode:/dev/null: 0

$ enstore pnfs —--layer /pnfs/test/mydir/somefile 4

TEST42
0000_000000000_0000402
1024

my file family
/pnfs/test/mydir/somefile

000100000000000000018820

WAMS103661998200000
testnode:/dev/null: 0

Now update the layer 4 information.
$ enstore pnfs —--cp /tmp/L4 /pnfs/test/mydir/somefile 4
Verify that the contents are what we expect.

$ enstore pnfs —--xref /pnfs/test/mydir/somefile

volume: NULLO1

location_cookie: 0000_000000000_0000397
size: 1024

file family: my file family

original name: /pnfs/test/mydir/somefile
map_file:

pnfsid _file: 000100000000000000018820
pnfsid_map:

bfid: WAMS103661998200000

origdrive: testnode:/dev/null:0

crc: unknown

Enstore Administrator Commands

--cursor <FILENAME>
Outputs the PNFS specific cursor information to standard out about the
specified directory or parent directory of the file specified.

$ enstore pnfs --cursor /pnfs/test

dirID=0001000000000000000010A8
dirPerm=0000001400000020
mountID=000100000000000000001060

This shell command has the same result.

$ cat “/pnfs/test/. (get) (cursor)”

--database <FILENAME>
Output the PNFS database information for the specified file or directory.

$ enstore pnfs —--database /pnfs/datal

datal:1l:r:enabled:/diska/pnfsdb/pnfs/databases/datal
This shell command has the same result.

$ cat “/pnfs/datal/. (get) (database)”

--databaseN

--dump
After the command is completed, additional diagnostic information is also
printed to standard out.

--echo <TEXT> <FILENAME> <LAYER>
Writes the contents of TEXT into the named layer of the specified file. This
switch is most useful in writing information to layer 1 of a file.

Look at the current layer 1 information.

$ enstore pnfs --layer /pnfs/test/mydir/somefile 1

WAMS103667492900000
Update the layer 1 information.

$ enstore pnfs --echo \
WAMS103661998200000 /pnfs/test/mydir/somefile 1

Verify that the value is now correct.

$ enstore pnfs --bfid /pnfs/test/mydir/somefile

WAMS103661998200000

Enstore Administrator Commands 96

--id <FILENAME>
Outputs the pnfsid of the specified filename or directory.

$ enstore pnfs —--id /pnfs/test/mydir/somefile

000100000000000000018820
This shell command has the same result.

$ cat “/pnfs/test/mydir/. (id) (somefile)”

--io <FILENAME>
Feature not yet implemented.

--Is
Forks an Is on the named layer of a file.

$ enstore pnfs --1ls /pnfs/test/mydir/fname

—-rw-r————— 1 enstore g023 127 Nov 6 2002 /pnfs/test/mydir/. (use) (4) (fname)
This shell command has the same result.

$ 1s -1 “/pnfs/test/mydir/. (use) (4) (fname)”

--mount-point <FILENAME>

Outputs the directory that is the mount point for the mounted PNFS file
system that the specified file or directory belongs to.

$ enstore pnfs —--mount-point /pnfs/test/mydir/somefile

/pnfs/test

--nameof <PNFS_1D>
Output the name of the file or directory with the specified pnfsid.

$ enstore pnfs —--nameof 000100000000000000018820

somefile
This shell command has the same result.

$ cat “/pnfs/test/. (nameof) (000100000000000000018820) "

--parent <PNFS_ID>

Output the pnfsid parent directory of the file or directory with the specified
pnfsid.

$ enstore pnfs —--parent 000100000000000000018820
0001000000000000000010A8

$ enstore pnfs —-nameof 0001000000000000000010A8

mydir

This shell command has the same result.

$ cat “/pnfs/test/. (parent) (000100000000000000018820) "

Enstore Administrator Commands

--path <PNFS_ID>

Outputs the full path of the file with the specified pnfsid.

WARNING: This command must be used with care. It launches a linear
search through the entire PNFS database for each component in the full file
path. Abuse of this command will result incredibly slow response times from
PNFS.

Note: If multiple PNFES servers are mounted on a single machine it is possible
that multiple matches are found. When this happens; the error message is
sent to standard error, a non-success exit status is returned and all of the
matched paths are printed to standard out.

$ enstore pnfs —-path 0001000000000000000010A8
/pnfs/test/mydir
$ enstore pnfs —-path 000100000000000000018820

/pnfs/test/mydir/somefile
A similar command is the pathfinder PNFS utility.

pathfinder 00010000000000000000E468

00010000000000000000E468 testfileb
0001000000000000000010A8 mydir
000100000000000000001060 test
000000000000000000001080 usr
000000000000000000001040 f£fs
000000000000000000001020 root
000000000000000000001000 -
000000000000000000000100 -
000000000000000000000000 -
/root/fs/usr/test/mydir/testfileb

--position <DIRECTORY>
Outputs the PNFS specific position information to standard out about the
specified directory.

$ enstore pnfs -postion /pnfs/test

dirID=0001000000000000000010A8
dirPerm=0000001400000020
mountID=000100000000000000001060

This shell command has the same result.

$ cat “/pnfs/test/. (get) (position)”

--rm <FILENAME> <LAYER>
Feature not yet implemented.

Enstore Administrator Commands 98

--showid <PNFS_ID>

Outputs PNFS information about the specified pnfsid.
$ enstore pnfs -id /pnfs/test/mydir/somefile
000100000000000000018820

$ enstore pnfs —-showid 000100000000000000018820

ID : 000100000000000000018820
Type I e

next ID : 000000000000000000000000
base ID : 000000000000000000000000
parent ID : 0001000000000000000010A8
creation time : Wed Nov 6 15:59:39 2002
modif. time : Thu Feb 7 14:40:18 2008
Type : Regular (Inode)

Info bytesPerBlock : 928
Info blocksPerhash : 77

mst_dev 01

mst_ino : 16877600

mst_mode : 100640

mst_nlink 01

mst_uid : 9276

mst_gid : 1530

mst_rdev : 100

mst_size : 1024

mst_atime : Thu Nov 29 10:37:31 2007
mst_mtime : Wed Nov 6 15:59:42 2002
mst_ctime : Wed Nov 6 15:59:39 2002
mst_blksize : 512

mst_blocks)

Entries(0) : 0

Chain (0) : 000000000000000000000000
Group (0) : 0

Entries (1) : 19

Chain (1) : 000100000000000000018830
Group (1) : 0

Entries (2))

Chain (2) : 000000000000000000000000
Group (2) : 0

Entries(3) : 0

Chain (3) : 000000000000000000000000
Group (3) : 0

Entries (4) ;127

Chain (4) : 000100000000000000018838
Group (4) : 0

Entries(5) : 0

Chain (5) : 000000000000000000000000
Group (5) : 0

Entries(6) : 0

Chain (6) : 000000000000000000000000
Group (6) : 0

Entries (7) : 0

Chain (7) : 000000000000000000000000
Group (7) : 0

This shell command has the same result.

cat "/pnfs/test/. (showid) (000100000000000000018820) "

99

Enstore Administrator Commands

--size <FILENAME> <SIZE>
Sets the file size as seen by the C library stat() function call.

$ 1s -1 /pnfs/test/mydir/zerofile
-rw-rw-r—— 1 enstore g023 0 Feb 7 15:52 /pnfs/test/mydir/zerofile

$ enstore pnfs —--size /pnfs/test/mydir/zerofile 123456

$ 1s -1 /pnfs/test/mydir/zerofile

-rw-rw-r—— 1 enstore g023 123456 Feb 7 15:55 /pnfs/test/mydir/zerofile

--storage-group [STORAGE_GROUP]

Similar to --file-family, --file-family-width, --file-family-wrapper and
--library. See the User's Guide for descriptions to those switches. All storage
group tag files should be owned by root; thus requiring the effective user id
to be root in order to modify the storage group. The current working
directory must be in the PNFS directory whose tags need to be viewed or
modified. See also --tagecho.

$ enstore pnfs --storage-group

old storage_group

enstore pnfs --storage-group new_storage_group

$ enstore pnfs --storage-group

new_storage_group

--tagecho <TEXT> <TAG>
Write the contents of TEXT to the named tag.

enstore pnfs —--tagecho new_storage_group storage_group

See also --file-family, --file-family-width, --file-family-wrapper and--library
in the User's Guide and --storage-group. The current working directory must
be in the PNFS directory whose tags need to be viewed or modified.

--tagrm <TAG>
Feature not yet implemented.

4.15 enstore pnfs_agent

Syntax:
% enstore pnfs_agent [--options [arguments] ...]
Options:

Enstore Administrator Commands 100

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore pnfs_agent —--help

Usage:
pnfs_agent [OPTIONS]...

——-do-alarm <DO_ALARM> turns on more alarms
—-do-log <DO_LOG> turns on more verbose logging
——do-print <DO_PRINT> turns on more verbose output
——dont-alarm <DONT_ALARM> turns off more alarms

-h, —--help prints this messge
—--status print pnfs_agent status

—-timeout <SECONDS> number of seconds to wait for
—--usage prints short help message

-a, —-—alive prints message if the server is up or down.

—-dont-log <DONT_LOG> turns off more verbose logging
——dont-print <DONT_PRINT> turns off more verbose output

—-retries <ALIVE_RETRIES> number of attempts to resend alive requests

alive response

4.16 enstore quota

Syntax:
% enstore quota [-—-options [arguments]
Options:

col]

-h, --help
Prints the options (i.e. Prints this message). Example:
$ enstore quota —--help

Usage:
quota [OPTIONS]...

create quota for (library, storage_group

)

——-disable disable quota
——enable enable quota
-h, —--help prints this messge

—--set—authorized <LIBRARY> <STORAGE_GROUP> <NUMBER>

—--set—quota <LIBRARY> <STORAGE_GROUP> <NUMBER> set
(library,
storage_group)
—--set-requested <LIBRARY> <STORAGE_GROUP> <NUMBER>
number
for (library, storage_group)
—-show [LIBRARY] [STORAGE_GROUP] show quota
—-show-by-library show quota by the libraries
—-—-usage prints short help message

——delete <LIBRARY> <STORAGE_GROUP> delete (library,

——create <LIBRARY> <STORAGE_GROUP> [REQUESTED] [AUTHORIZED] [QUOTA]

storage_group)

set authorized

number for (library, storage_group)

quota for

set requested

101 Enstore Administrator Commands

--create <LIBRARY> <STORAGE_GROUP> [REQUESTED]
[AUTHORIZED] [QUOTA]

--delete <LIBRARY> <STORAGE_GROUP>

--disable

--enable

--set-authorized <LIBRARY> <STORAGE_GROUP> <NUMBER>

--set-quota <LIBRARY> <STORAGE_GROUP> <NUMBER>

--set-requested <LIBRARY> <STORAGE_GROUP> <NUMBER>

--show [LIBRARY] [STORAGE_GROUP]

--show-by-library

4.17 enstore ratekeeper

Syntax:
% enstore ratekeeper [--options [arguments] ...]
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore ratekeeper —--help

Usage:
ratekeeper [-ha --alive —-help —--retries= --timeout= --usage]
-a, ——alive prints message if the server is up or down.
-h, —-help prints this messge

—-retries <ALIVE_RETRIES> number of attempts to resend alive requests
——timeout <SECONDS> number of seconds to wait for alive response
——-usage prints short help message

Enstore Administrator Commands 102

4.18 enstore restart

Without any switches or arguments, this restarts most Enstore processes on
the current host. See also enstore start and enstore stop.
Syntax:

% enstore restart [—-—options [arguments] ...]
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore restart --help

Usage:
restart [-h -—-all —--help —--just= --usage]
--all specify all servers
-h, —-help prints this messge
——just <SERVER NAME> specify single server
——usage prints short help message
--all

Restart all Enstore processes on the current host. This includes the
monitor server and pnfs_agent excluded by the default list without
any switches or arguments.

--just <SERVER_NAME>
Restart just the server specified.

$ enstore restart --just log server

Checking log_server.

Stopping log server: 131.225.84.1:7504
Stopped log_server.

Starting log _server: 131.225.84.1:7504

4.19 enstore scan

At minimum, the —--type argument is required. Its value may be forward
or reverse, with the latter pending implementation.

Syntax:

% enstore scan —-type=SCAN_TYPE [OPTIONS]

Options:

103 Enstore Administrator Commands

-h, --help
Prints the options.

$ enstore scan —--help

Usage: enstore scan -t SCAN_TYPE [OPTIONS]

Options:

-h, —--help show this help message and exit

-t SCAN_TYPE, --type=SCAN_TYPE
(forward, reverse) scan type

-d FS_ROOT, --directory=FS_ROOT
(for forward scan only) absolute path of directory to
scan recursively (recommended default is
/pnfs/fs/usr)
(not recommended to be specified for large nested
directories)

-o OUTPUT_FILE, —--output_file=OUTPUT_FILE

absolute path to output file for notices (default is
dynamic, e.g. /home/enstore/sca
n_20130301T180002.10q)

(appended if exists)

-p PRINT, ——print=PRINT
(checks, notices) for the specified scan type, print
all checks and their overviews or all notice
templates, and exit

-r, —-—-resume for specified output file (per -o), resume scan where
aborted (default is to restart scan) (use with same
database only)

—s STATUS_INTERVAL, --status_interval=STATUS_INTERVAL
max status output interval in seconds (default
approaches 600)

Refer to the Metadata Scanning chapter for additional usage information.

4.20 enstore schedule

See enstore inquisitor command.

4.21 enstore start

Without any switches or arguments, this starts most Enstore processes on the
current host. See also enstore stop and enstore restart.

Syntax:

% enstore start [--options [arguments] ...]

Options:

Enstore Administrator Commands 104

-h, --help
Prints the options (i.e. Prints this message). Example:
$ enstore start --help

Usage:
restart [-h --all --help --just= —--usage]

--all specify all servers
-h, —--help prints this messge
—-just <SERVER NAME> specify single server
—-nocheck do not check if server is already running.
—-—-usage prints short help message

--all

Start all Enstore processes on the current host. This includes the monitor
server and pnfs_agent excluded by the default list without any
switches or arguments.

--just <SERVER_NAME>
Start just the server specified.
$ enstore start --just log_server

Checking log_server.
Starting log_server: 131.225.84.1:7504

--nocheck

Assumes that the servers are already down. This speeds startup if it is
already known that the servers will not still be running. Used by enstore
restart.

4.22 enstore stop

Without any switches or arguments, this stops most Enstore processes on the
current host. See also enstore start and enstore restart.
Syntax:

% enstore stop [--options [arguments] ...]

Options:

-h, --help
Prints the options (i.e. Prints this message). Example:
$ enstore stop —--help

Usage:
restart [-h --all --help --just= —--usage]

--all specify all servers

-h, —--help prints this messge
—-just <SERVER NAME> specify single server
—-—-usage prints short help message

105

Enstore Administrator Commands

--all

Stop all Enstore processes on the current host. This includes the monitor
server and pnfs_agent excluded by the default list without any
switches or arguments.

--just <SERVER_NAME>
Stop just the server specified.

$ enstore stop —--just log server

Checking log_server.
Stopping log server: 131.225.84.1:7504
Stopped log_server.

4.23 enstore system

Updates the Status at a Glance page and System Summary web pages.
Syntax:

% enstore system [--options [arguments] ...]
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:
$ enstore system --help

Usage:
system [-h —--help —--usage]

-h, —--help prints this messge
—-—-usage prints short help message

4.24 enstore up_down

Syntax:
% enstore up_down [—-—-options [arguments] ...]
Options:

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore up_down --help

Usage:
up_down [-h —--help --make-html --no-mail --summary —--usage]
-h, —--help prints this messge
—-make-html format output as html
—-no-mail do net send e-mail in case of errors
——summary print (stdout) server states
——-usage prints short help message

Enstore Administrator Commands 106

--make-html

--no-mail

--summary

4.25 enstore volume

Syntax:
% enstore up_down [--options [arguments] ...]
Options:

107 Enstore Administrator Commands

-h, --help
Prints the options (i.e. Prints this message). Example:

$ enstore volume --help

Usage:

-a,

group

vol [OPTIONS]...

—--VOL1OK reset cookie to '0000_000000000_0000001"
——add <VOLUME_NAME> <LIBRARY> <STORAGE_GROUP> <FILE_FAMILY> <WRAPPER>
<MEDIA TYPE> <VOLUME_BYTE_CAPACITY> [REMAINING_BYTES] declare a
new volume
--alive prints message if the server is up or down.
--all used with --restore to restore all
——-assign-sg <STORAGE_GROUP> <VOLUME_NAME> reassign to new storage

—-backup backup voume journal -- part of database backup
—-bypass—-label-check skip syntatical label check when adding new
volumes

——check <VOLUME_NAME> check a volume

——clear <VOLUME_NAME> clear a volume

—--clear-sg used with recycle to clear storage group
——decr-file—-count <COUNT> decreases file count of a volume
——delete <VOLUME_NAME> delete a volume

——do-alarm <DO_ALARM> turns on more alarms

—-do-log <DO_LOG> turns on more verbose logging

——do-print <DO_PRINT> turns on more verbose output
——dont—-alarm <DONT_ALARM> turns off more alarms

——dont-log <DONT_LOG> turns off more verbose logging
——dont-print <DONT_PRINT> turns off more verbose output
——erase <VOLUME_NAME> erase a volume

——export <VOLUME_NAME> export a volume
——forget-all-ignored-storage—-groups clear all ignored storage groups
—--forget-ignored-storage—-group <STORAGE_GROUP> clear a ignored

storage

~h,

group
——full <VOLUME_NAME> set volume to full
—-—get—-sg—-count <LIBRARY> <STORAGE_GROUP> check allocated count for

1lib, sg

—-—-gvol <VOLUME_NAME> get info of a volume in human readable time
format

—-help prints this messge

—-history <VOLUME_NAME> show state change history of volume

——-ignore-storage—group <STORAGE_GROUP> ignore a storage group. The
format is "<library>.<storage_group>"

——import <EXPORTED_VOLUME_OBJECT> import an exported volume object.
The file name is of the format

"vol.<volume_name>.obj"

--just used with --pvols to list problem
—-keep-declaration-time keep declared time when recycling
—-labels list all volume labels

—--list <VOLUME_NAME> 1list the files in a volume

—-ls—-active <VOLUME_NAME> list active files in a volume
—-ls-sg-count list all sg counts

—--migrated <VOLUME_NAME> set volume to MIGRATED

—-modify <VOLUME_NAME> modify a volume record -- extremely dangerous
—--new-library <LIBRARY> set new library

—-no-access <VOLUME_NAME> set volume to NOTALLOWED

—--not-allowed <VOLUME_NAME> set volume to NOTALLOWED

—-—-pvols list all problem volumes
—-read-only <VOLUME_NAME> set volume to readonly
—-rebuild-sg-count rebuild sg count db

—--recycle <VOLUME_NAME> recycle a volume
—-reset-1lib <LIBRARY> reset library manager
—--restore <VOLUME_NAME> restore a volume

Enstore Administrator Commands 108

--VOL10K

Used in conjunction with --add. This modifier lets Enstore know that the
volume will have an ANSI VOL1 label already written on the media. If
there is not a VOL1 label already on the volume do not use this switch.

--add <VOLUME_NAME> <LIBRARY> <STORAGE_GROUP>\
<FILE_FAMILY> <WRAPPER> \

<MEDIA_TYPE> <VOLUME_BYTE_CAPACITY>\
[REMAINING_BYTES]

Used to declare a new volume to Enstore. The VOLUME_NAME,
LIBRARY, and MEDIA_TYPE need to be set when this command is
executed. The LIBRARY, STORAGE_GROUP, FILE_FAMILY AND
WRAPPER can in any combination be set to their correct value or the string
“none” (without the double quotes). The LIBRARY value, when specified,
needs to match the short name (without the trailing .library_manager) of the
library it will belong to. The MEDIA_TYPE must match a media type
defined in the blocksizes section of the configuration file (see section ?).

$ enstore volume —--add TS0001l none none none none LTO 800G

See --vol or --gvol for the example to show the meta data for TS0001.

--all

--assign-sg <STORAGE_GROUP> <VOLUME_NAME>
Specify a new storage group for this volume. See also --new-library.

$ enstore volume --assign-sg new_sg NULLO1l

BAD STATUS ('V-ERROR', 'can not reassign from existing storage group zee')

--backup
Backup the volume journal.

$ enstore volume --backup

--bypass-label-check
Used with --add to skip the check if a volume name is valid. The format of a
valid ANSI label in this exact order is:

1. 2 Alphabetical characters

2. 2 Alphanumeric characters

3. 2 Numeric characters

4. For LTO tapes in ADIC robots only, an appended L1 or L2.
The following example shows an 'illegal' label name being defined; the fifth
character in the label is alphabetical not numeric.

$ enstore volume -add STORM1 none none none none LTO 100G \
——bypass—-label-check

109

Enstore Administrator Commands

--check <VOLUME_NAME>

Output the current status of the volume. This output puts everything on one

line, instead of multiple lines like --vol, --gvol does.

$ enstore vol —--check TESTO1l

TESTO1 60.14GB ['NOTALLOWED', 'none'] ['none', 'none']
The contents of the output are:

The volume name.

The unused bytes renaming on the volume.

The pair of system inhibits.

4. The pair of user inhibits.

wN =

--clear <VOLUME_NAME-> [system_inhibit | user_inhibit <1 | 2>]

Clear the any system inhibit on the volume. By default “system_inhibit 17 is

assumed if not specified.
Example to clear NOTALLOWED or NOACESS system inhibits on the
volume.

$ enstore vol--check TESTO1l
TESTO1 60.14GB ['NOTALLOWED', 'none'] ['none', 'none']

$ enstore vol --clear TESTO1l

$ enstore vol --check TESTO1l

TESTO1 60.14GB ['none', 'none'] ['none', 'none']
Example to clear full or readonly system inhibits on the volume:

bash-3.00$ enstore vol --check TEST04
TESTO04 59.82GB ['none', 'full'] ['none', 'none']

bash-3.00$ enstore vol --clear TESTO04 system_ inhibit 2

bash-3.00$ enstore vol --check TEST04

TESTO04 59.82GB ['none', 'nmone'] ['none', 'none']

--clear-sg

Used with --recycle to clear the storage group. This will allow the volume to

be placed into the common blank pool for any experiment to use.

--decr-file-count <COUNT>

Enstore Administrator Commands 110

--delete <VOLUME_NAME>

Delete a volume. The volume must contain only files that are marked
deleted. If the volume contained zero files on it, the volume is totally
removed from the system. If the volume contained files, then the volume is
renamed to have .deleted appended to it. To remove a .deleted file see
--erase.

First the empty volume example:

$ enstore volume --check TESTO1

TESTO1 1000.00GB ['none', 'nmone'] ['none', 'none']

$ enstore volume —--delete TESTO1l

$ enstore volume —--check TESTO1
BAD STATUS ('NO SUCH VOLUME', 'Info Clerk: no such volume TESTO01l')
$ enstore volume —--check TESTOl.deleted

BAD STATUS ('NO SUCH VOLUME', 'Info Clerk: no such volume TESTOl.deleted')
Here is the non-empty volume example:

$ enstore volume —--check TESTO02
TESTO02 1000.00GB ['none', 'nmone'] ['none', 'none']

$ enstore volume —--delete TESTO02

$ enstore volume —--check TESTO02.deleted

TESTO02.deleted 60.32GB ['DELETED', 'none'] ['none', 'none']

--erase <VOLUME_NAME>
Remove a .deleted volume from the system. This command is used after
--delete or --recycle.

Senstore volume —-check TESTO02.deleted
TESTO02.deleted 60.32GB ['DELETED', 'nmone'] ['none', 'none']

$ enstore volume -—-erase TESTO02.deleted

$ enstore volume —--check TESTO02.deleted

BAD STATUS ('NO SUCH VOLUME', 'Info Clerk: no such volume TESTO02.deleted')

--export <VOLUME_NAME>

--forget-all-ignored-storage-groups

--forget-ignored-storage-group <STORAGE_GROUP>

111

Enstore Administrator Commands

--full <VOLUME_NAME>
Set the specified volume's status to full.

$ enstore volume —--check STORM3
STORM3 59.82GB ['none', 'mone'] ['none', 'none']

$ enstore volume —-full STORM3

$ enstore volume —--check STORM3

STORM3 59.82GB ['none', 'full'] ['none', 'none']

--get-sg-count <LIBRARY> <STORAGE_GROUP>

Lists the number of volumes belonging to the indicated library and storage
group pairing. This as the the same functionality as enstore info
--get-sg-count.

$ enstore volume -get-sg-count LTO3 test

rain zee 3

--gvol <VOLUME_NAME>
Similar to --vol, but the time values are converted to human readable strings
instead of seconds from the beginning of the epoch.

$ enstore volume —--gvol V02345

{'blocksize': 131072,
'capacity bytes': 214748364800L,
'comment': '',
'declared': 'Fri Aug 3 08:42:35 2007',
'eod_cookie': '0000_000000000_0000130',
'external_label': 'V02345’',
'first_access': 'Tue Aug 28 07:09:39 2007°',
'last_access': 'Tue Aug 28 09:29:07 2007',
'library': 'CD-9940B',
'media_type': '9940B’',
'remaining bytes': 134423138304L,
'si_time': ('Wed Dec 31 18:00:00 1969', 'Tue Jul 17 02:56:42 2007'"),
'sum_mounts': 51,
'sum_rd_access': 0,
'sum_rd err': O,
'sum_wr_access': 129,
'sum_wr_err': O,
'system_inhibit': ['none', 'none'],
'user_inhibit': ['none', 'none'],
'volume_family':
'minos.mcout_cedar phy near daikon_00_LO010170N_cand.cpio_odc',
'wrapper': 'cpio_odc’',
'write_protected': 'n'}

Enstore Administrator Commands 112

--history <VOLUME_NAME>
Output the inhibit changes for the volume.

$ enstore volume --history BZG023

2008-02-11 13:19:17.892302 system_inhibit[0] none
2008-02-11 13:18:17.22456 system_inhibit[1] full
2007-09-18 14:17:05.716276 system_inhibit[0] none
2007-07-18 15:16:37.713169 system_inhibit[0] NOACCESS
2007-01-31 10:25:22.996649 system_inhibit[0] none
2007-01-31 10:15:26.246705 system_inhibit[0] NOACCESS

--ignore-storage-group <STORAGE_GROUP>

--import <EXPORTED_VOLUME_OBJECT>

--Just

--keep-declaration-time
Keep the current declaration time when recycling a volume. See also
--recycle.

--labels
List all volume names.

$ enstore volume —-labels | head

NULOO1
NUL002
NULOO3
NULO004
NULOO5
NULOO6
NULOO7
NULOO8
NULOO9
NULO10

--migrated <VOLUME_NAME>

--modify <VOLUME_NAME>

Powerful command to modify all database fields (except volume names).
See --vol or --gvol for examples of outputting the contents of these changes.
Example to reset the comment field:

$ enstore volume --modify TESTO03 'comment=""'
Example to reset the system inhibit:

$ enstore volume -modify TESTO3 \
“system_ inhibit=['none', 'full']"

113 Enstore Administrator Commands

--new-library <LIBRARY>

--no-access <VOLUME_NAME>
Synonym for --not-allowed.

--not-allowed <VOLUME_NAME>
Set the volume system inhibit to NOTALLOWED.

$ enstore volume —--check TZ4562
TZ4562 59.82GB ['none', 'full'] ['none', 'none']

bash-3.00$ enstore volume —-not-allowed TZ4562

bash-3.00$ enstore volume —-check TZ4562

TZ4562 59.82GB ['NOTALLOWED', 'full'] ['none', 'none']

--read-only <VOLUME_NAME>

Set the specified volume's status to readonly.

$ enstore volume —--check TZ4562

TZ4562 59.82GB ['none', 'none'] ['none', 'none']

$ enstore volume —-full TZ4562

$ enstore volume —--check TZ4562

TZ4562 59.82GB ['none', 'readonly'] ['none', 'none']

--rebuild-sg-count

--recycle <VOLUME_NAME>

Rename the current volume by VOLUME_NAME to
VOLUME_NAME.deleted. Then declare a new VOLUME_NAME volume
while preserving information like mount and access counts. See also
--clear-sg and --keep-declaration-time.

S$enstore volume —--recycle JK4562

--reset-lib <LIBRARY>

--restore <VOLUME_NAME>

Enstore Administrator Commands 114

--set-comment <COMMENT> <VOLUME_NAME>

Set the comment field for a volume.

$ enstore volume --vol GR4444 | grep comment
'comment': '',

$ enstore volume --set-comment "Possible issue at location
42." GR4444

$ enstore volume --vol GR4444 | grep comment

'comment': 'Possible issue at location 42.°',
To reset the comment back to being emtpy some care needs to be used to
avoid the shell eating the double quotes.

$ enstore volume —--set-comment \"\" GR4444

--set-sg-count <LIBRARY> <STORAGE_GROUP> <COUNT>

--show-ignored-storage-groups

--show-quota

--show-state
Show the internal state of the volume clerk.

--trim-obsolete <VOLUME_NAME>

--write-protect-off <VOLUME_NAME>
Set the write protect tab state to off for the specified volume. See also
--write-protect-on and --write-protect-status.

--write-protect-on <VOLUME_NAME>
Set the write protect tab state to on for the specified volume. See also
--write-protect-off and --write-protect-status.

115 Enstore Administrator Commands

--write-protect-status <VOLUME_NAME>

Show the write protect tab state for the specified volume. See also
--write-protect-off and --write-protect-on.

$ enstore volume —--write-protect-status GAME42

GAME42 write-protect OFF

$ enstore volume —--write-protect-on GAME42

$ enstore volume —--write-protect-status GAME42
GAME42 write-protect ON

$ enstore volume —--write-protect-off GAME42

$ enstore volume —--write-protect-status GAME42

GAME42 write-protect OFF

Enstore Administrator Commands 116

Chapter 5: Migration and Duplication

Migration is the task of reading files from one tape then writing them onto
another tape with the intend of replacing the original. Usually this is to put
them on newer tapes, typically using newer tape technology.

Duplication reads original files and instead of replacing the old copies makes
the newly written copies a duplicate' of the original.

Cloning via migration occurs when the source media type and destination
media type are the same.

There are four stages recorded in the progress of file migration or duplication.
These states are recored in the migration table in the Enstore DB.
1. Copied - the original file(s) has been read from the source tape and
written to the new tape.
2. Swapped
a) Migration — The meta data has been swapped. This means that the
new copy is the one users see from PNFS.
b) Duplication — The new file's meta data has be recorded as a
duplicate of the original file.
3. Checked — The new copy on the new tape has been read to verify that
everything went correctly with reading and writing the file.
4. Closed — The file copying and verification is done.
See the ——status switch for information on these states. If the file copying
becomes interrupted; it can safely be restarted and it will pick up where it left
off.

There are three times that a volume's meta data are modified:

1. The original volume is set to migrating, duplicating or cloning when
the first file is attempted to be migrated, duplicated or cloned via
migration. This is to prevent additional files being written to the
volume while it is being copied.

2. After all files on a original volume are copied and swapped:

a) The original volume's meta data has its system inhibit set to
migrated, duplicated or cloned.

b) The original volume's comment is set to record the volumes the
files were migrated or duplicated onto.

3. After all the files on the destination volume are copied, swapped,

1 Encp can make multiple copies (A.K.A. duplicates) of files using the ——copies switch. Duplication, as
described here, mimics this feature of encp.

Migration and Duplication 117

checked and closed:

a) The comment of the new tape is set to recored the volume list that
the files were migrated or duplicated from.

b) Themigration_history is updated to record the original
volume, destination volume and the time stamp this was
completed.

¢) For migration only: The file_family is set to the non-migration
mangled file family. Duplication leaves this value alone because it
has already been set to the correct multiple copy mangled file
family.

There are three modes to migration or duplication:
1) Copying a list of files. Internally, it is converted to a list of bfids.
2) Copying a list of bfids.
3) Copying all the files on a list of volumes.
Migrating or duplicating an entire volume's worth of files at one time is
usually more efficient.

5.1 Preparation

Before migrating or duplicating files the following steps are recommended.

1. Check that /pnfs/£fs/ is mounted on the node the migration or
duplication will be run on. If multiple PNFS installations are present,
make sure the correct one is currently mounted.

2. Check that the pnfs tags in the /pnfs/fs/usr/Migration
directory contain the correct values. It is strongly recommended that
this directory be its own PNFS database.

3. Use the enstore info --show-bad command to identify any files that
will be expected to be unreadable.

4. Use the enstore scan command to check the meta data of the source
bfids, files or volumes.

5.2 Migration

5.2.1 Reasons for migration

Three main reasons exist for migrating data to new tapes.
1. Using denser media with faster tape drives.
2. Data compaction or “squeezing” of active data files to free up space
occupied by deleted files.
3. The tape a file(s) is currently on is no longer reliable.

118 Migration and Duplication

5.2.2 Migration command

Syntax, as root:

migrate [——-option [argument] ...] [target_list]
migrate [—-—-option [argument] ...] [media_type
[library [storage_group [file family [wrapper]]]l]]
migrate —--restore [target_list]

migrate --scan [target_list]

Syntax, as any user:

% migrate —--status [target_list]

% migrate ——migrated-from <volume_list>

% migrate —-—migrated-to <volume_list>

The target list can be volume labels, BFIDs or file names in any order in any
combination. Internally, file names are converted to BFIDs. All BFIDs are
processed before volumes.

Here is an example of the primary use of this command to migrate three
volumes worth of files to new media.’

migrate —--spool-dir /data/data2/Migration_Spool VO0000
vOo0001 V00002

A return code of zero (0) indicates success migrating all files (or volumes) in
the argument list.

A volume that has been migrated will have its status set to reflect that it has
been migrated. The following shows that OLDO00O has been migrated to
NEWO0O1. Note: The comment contains the string “<=" or “=>". This
indicates migration was done. If duplication were performed, this string
would be “->” or “<-" instead. Note: A volume's comment field can be
changed at any time; especially if a problem with the tape arises. This
clobbering means that this can not be the only means used to determine if a
volume contains migrated (or duplicated) files.

$ enstore info —--vol OLD000 | egrep "comment |system_inhibit"

'comment': '=> NEWOO1l',
'system_inhibit': ['none', 'migrated'],

$ enstore info —--vol NEW0Ol | egrep "comment |system_inhibit"

'comment': '<= OLDO0O0O',
'system_inhibit': ['none', 'none'],

A log of the migration, everything set to standard out, is also sent to:

2 The sample command has been split onto two lines with the standard shell continuation character (\).

Migration and Duplication 119

/var/migration/MigrationLog @ <timestamp>#<pid>

Options:

-h, --help
Prints the options (i. e. Prints this message). Example:

$ migrate —--help

Usage:

migrate [OPTIONS]... [bfidl [bfid2 [bfid3 ...]]] | [voll [vol2
[vol3 ...1]11 | [filel [file2 [file3 ...]]] | [voll:lcl [vol2:1lc2
[vol3:1ec3 ...111]

migrate [OPTIONS]... [media type [library [storage group [file_ family
[wrapper]1111]

migrate [OPTIONS]... —-restore [bfidl [bfid2 [bfid3 ...]] | [voll
[vol2 [vol3 ...1]1]1 | [filel [file2 [file3 ...]1]]1 | [voll:lcl [vol2:1lc2
[vol3:1ec3 ...111]

migrate [OPTIONS]... —--scan [bfidl [bfid2 [bfid3 ...]] | [voll [vol2
[vol3 ...1]1]1 | [filel [file2 [file3 ...]1]] | [voll:lcl [vol2:1lc2
[vol3:1ec3 ...111]

migrate [OPTIONS]... —--migrated-from <voll [vol2 [vol3 ...]]>

migrate [OPTIONS]... —--migrated-to <voll [vol2 [vol3 ...]]1>

migrate [OPTIONS]... —--status [bfidl [bfid2 [bfid3 ...]]] | [voll
[vol2 [vol3 ...1]]1 | [filel [file2 [file3 ...]1]]1 | [voll:lcl [vol2:1lc2
[vol3:1ec3 ...111]

migrate [OPTIONS]... —-show <media_type> [library [storage_group

[file family [wrapper]]]]]

——destination-only Used with --status to only list output assuming
the volume is a destination volume.
——file-family <FILE_FAMILY> Specify an alternative file family to
override the pnfs file family tag.
-h, —--help prints this message
——infile <INFILE> Read target list of bfids, volumes,
volume:location_cookie pairs or paths from file.
Types can be intermixed.
—-library <LIBRARY> Specify an alternative library to override the
pnfs library tag.

—-migrated-from Report the volumes that were copied to this
volume.

—--migrated-to Report the volumes that were copied from this
volume.

—-migration-only Used with --status to only list output assuming

the target is not orhas not a multiple copy.
—-multiple—-copy-only Used with —--status to only list output assuming
the target is orhas a multiple copy.
——priority <PRIORITY> Sets the initial job priority. Only
knowledgeable users should set this.
——-read-to—-end-of-tape Read to end of tape before starting to write.
—-restore Restores the original file or volume.
——-scan Scan completed volumes or individual bfids.
—-show <MEDIA_TYPE> [LIBRARY] [STORAGE_GROUP] [FILE_FAMILY] [WRAPPER]
Report on the completion of volumes.
—-skip-bad Skip bad files.
——-source-only Used with --status to only list output assuming
the volume is a source volume.
——-spool-dir <SPOOL_DIR> Specify the directory to use on disk.
—--status Report on the completion of a volume.
S = State of duplication:
P = Primary/original copy; duplication

120

Migration and Duplication

C = Muliple copy; duplication
O = Original/primary copy
M = Multiple copy

D = Deleted state:

N = Not deleted
Y = Yes deleted
U = Unknown; failed write
B = Bad file
B = Bad file
E = Empty metadata fields
—-usage prints short help message
—-use-disk-files Skip reading files on source volume, use files

already on disk.
—-use-volume-assert Use volume assert when scanning destination

files.

—-with-deleted Include deleted files.

—-with-final-scan Do a final scan after all the files are recopied
to tape.

--destination-only
Used with --status to report the requested targets as source volumes or
BFIDs. See also --source-only and --status.

--duplication-only
Used with --status to report duplication only. See also --duplication-only,
--multiple-copy-only and --status.

--file-family <FILE_ FAMILY>

This switch overrides the original file family. This is typically used to
combine a number of smaller file families into one while squeezing a few
small capacity tapes onto new larger capacity tapes. This can help improve
file density by not wasting space on tapes.

--library <LIBRARY>
This switch overrides the PNFS library tag when writing the new copy.

It is permissible to specify a comma separated list of libraries, without any
whitespace. This will make additional multiple copies using the encp
--copies functionality.

--migrated-from <VOLUME_LIST>

Report on the list of volumes whose files to which files were migrated to the
requested volumes. This information does not come from the volumes
comment field; it is determined from the Enstore DB.

$ migrate —--migrated-from PSA423 PSA403

PSA423 <= PRU482L1 PRV397L1
PSA403 <= PRV033L1 PRV034L1

See ——migrated-to for information in the other direction.

--migrated-to <VOLUME_LIST>
Report on the list of volumes whose files to which files were migrated from
the requested volumes. This information does not come from the volumes

Migration and Duplication 1

comment field; it is determined from the Enstore DB.

$ migrate --migrated-to PRV397L1 PRV03411

PRV397L1 => PSA423
PRV03411 =>

See ——migrated-to for information in the other direction.

--migration-only
Used with --status to report migration and cloning only. See also
--destination-only, --multiple-copy-only and --status.

--multiple-copy-only
Used with --status to report copies made by encp only and from duplication.
See also --destination-only, --migration-only and --status.

--priority <PRIORITY>

The default priority for a migration encp is zero. This is lower than the
default priority of one for a typical encp. Use of this switch allows the user
to override the default to give this migration a higher priority.

--read-to-end-of-tape
Do not start writing files to the destination volume, until all source files have
been read from the source volume.

--restore <VOLUME_LIST> | <BFID_LIST> | <FILENAME_LIST>

After the swap step, the PNFS meta data points to the newly written copy of
the file. This command resets the PNFS meta data to point to the original
copy on the original tape, mark the old copy as undeleted, mark the new
copy as deleted and removes the temporary PNFS file from underneath
/pnfs/fs/usr/Migration/. If a volume was the target, then it also
resets the original volumes comment and system inhibit values.

migrate —-restore TEST01l TESTO02

The sequence of commands to undo a volume migration are:
Undo the metadata swap.

migrate --restore <VOLUME_LIST>
Purge the BFIDs of the new tape copies from the Enstore (file & volume)

database.
1. If all files on the new tape are from volumes that have just been

restored.
$ enstore volume --modify <VOLUME> comment="" #Once for each
volume.
$ enstore volume --recycle <VOLUME> #Once for each
volume.

Migration and Duplication

$ enstore volume —--erase <VOLUME>.deleted #Once for each
volume.

The switches--delete and --bfid could be used instead of --recycle; if
so then the -- modify command would be skipped.

2. If all files on the new tape are not from volumes that have just been
restored.

$ enstore file —--—-erase <BFID> #0Once for each bfid.

If a file on a newly migrated to volume is found to be unreadable; then you
can do the following:
Verify the bfid for the bad file.

migrate --status TST982Ll1 | grep -A 2 -B 2

DOMS113811445800000
DOMS113811429500000 DOMS122085462500000 y y
DOMS113811438100000 DOMS122085470200000 y y

DOMS113811445800000 DOMS122085478000000
DOMS113811454200000 DOMS122085481800000
DOMS113811462400000 DOMS122085487200000

Undo the metadata swap for the unreadable file.

KKK
KKK

migrate —--restore DOMS113811445800000

Wed Oct 1 14:45:07 2008 MIGRATION migrate —--restore DOMS113811445800000

Wed Oct 1 14:45:08 2008 RESTORE DOMS113811445800000 has already been marked
undeleted ... OK

Wed Oct 1 14:45:08 2008 RESTORE set DOMS122085478000000 deleted ... OK

Verify that there is no longer a destination bfid paired with the source bfid.

migrate --status TST982L1 | grep -A 2 -B 2

DOMS113811445800000

DOMS113811429500000 DOMS122085462500000 y y y y
DOMS113811438100000 DOMS122085470200000 y y y y
DOMS113811445800000

DOMS113811454200000 DOMS122085481800000 y y
DOMS113811462400000 DOMS122085487200000 y y

Remigrate the file.

--scan <VOLUME_LIST> | <BFID_LIST> | <FILENAME_LIST>

This switch closes out the migration status of the specified target files or
volumes. The volumes or bfids supplied need to be a destination target. If a
file on a tape is found to be unreadable or corrupted, it is not marked as
checked and the migration status of the volume, if applicable, will not be
updated.

If a volume was not migrated with the —with-final-scan switch enabled; then
the files on these volumes will be read to verify that everything is correct. If
—with-final-scan was enabled (and the files passed); then the files are marked
closed and the volumes have their migration status updated.

Migration and Duplication 3

$ migrate —--scan PSA000 PSA001

If a specific set of files are listed by their bfid, only those files are scanned.
If all the remaining bfids on a volume are supplied and they all scan
successfully the volume metadata is still left alone. This could be useful in
scanning the files from a particular source volume, while leaving the
destination volume available for more migrated files to be written to it.

--source-only
Used with --status to report the requested targets as source volumes or
BFIDs. See also --destination-only and --status.

--spool-dir <SPOOL_DIR>
Specify the spool directory where the files are read from the original tape,
before they are written to the new tape.

--status <VOLUME_LIST> | <BFID_LIST> | <FILENAME_LIST>
Report on the current status of the requested volumes, file names or bfids.
The volumes specified can be either an original volume or a new volume.

$ migrate —--status TST397L1

(TST397L1) src_bfid SDB dst_bfid SDB copied swapped checked closed
DOMS120685047500000 PN DOMS121088793700000 CN y y y
DOMS120688739300000 PN DOMS121088795600000 CN
DOMS120692204400001 PN DOMS121088798600000 CN
DOMS120730702700000 PN DOMS121088812000000 CN
DOMS120730706700000 PN DOMS121088822600000 CN
DOMS120730709100000 PN DOMS121088836900000 CN
DOMS120730711900000 PN DOMS121088849400000 CN
DOMS120730716200000 PN DOMS121088867100000 CN
DOMS120744939400000 CN DOMS121088874500000 PN
DOMS120744941400000 CN DOMS121088887000000 PN
DOMS120744961000000 CN DOMS121088904000000 PN
DOMS120753217600000 CN DOMS121096722600000 PN
DOMS120753222200000 CN DOMS121096725100000 PN
DOMS120753229700000 CN DOMS121096728100000 PN
DOMS120753229700000 YE

KKK KKK KKK KKK
KKK KKK KKK KK
KKK KKK KKK KKK

DUPLICATION

The left BFID is the source BFID; while the right BFID is the destination
BFID. In the above example the “y”’s indicate that the files have been
copied, swapped and checked.; but not closed. This would indicate that the
--with-final-scan switch was used and --scan-volumes has not
been used yet.

At the end of the output it is reported that duplication was used. The list of
valid values that can be appear here is: DUPLICATION, MIGRATION,
CLONING or left blank.

Migration and Duplication

Each BFID has a three columns of additional information:
S columns:
For migration they would be left blank.

For duplication a P indicates it is the primary copy of the file and
a C indicates it is a multiple copy from a duplication. They
appear immediately after the BFID located on the volume
specified on the command line. In the above example, the
volume on the command line was the source volume and that the
first 8 files are primary copies, while the rest are multiple copies.
See the section on swap_original_and_copy.py for more
information on primary versus multiple copy files.

A value of M represents a multiple copy and O represents an
original copy. These are different from P and C, since M and O
were created using the multiple copy feature of encp outside of
any duplication effort. If migration is used to make multiple
destination copies, then the --status output will include multiple
entries for each source bfid.

D columns: These columns report if the associated source and
destination BFIDs are marked deleted (Y) or not marked deleted
(N) in the database. A U value is possible for a file on a
destination volume when the file is the result of a failed transfer.

B columns: These columns indicate if the file has been marked bad
using the enstore file —--mark-bad command; such files
are reported with a B. An E, for empty, will appear here if the
file record is missing information, like the pnfs id and pnfs path
name, indicating that the file was a failed transfer.

Here is another use of ——status that can be used to report if the a volume
is done or not. The success return code (0) means that the volume is done;
while the error return code (1) indicates that it is not completed.

$ migrate —--status PSA003 > /dev/null; echo $?

0

$ migrate —--status PSA004 > /dev/null; echo $?

1

See also --destination-only, --duplication-only, --migration-only,
--multiple-copy-only and --source-only.

--use-disk-files

Migration and Duplication 5

Use the files already located in the spool directory to write to the new tape.
The file names must have the format <volume>:<location_cookie> and refer
the correct location on the original source tape. All files need to be present
in the spool directory. All unreadable files need to be marked as bad using
the enstore file --mark-bad <path> [bfid] command.

The intended purpose is to allow for tapes that are sent to a vendor for data
recovery (and are returned with files in different locations on the tape) to still
be migrated. The readable files need to be read using UNIX tools, like dd, to
dump the files.

--with-deleted

This switch tell the migration process that deleted files on the original
volumes are to be migrated too. These files are migrated to a different
volume then their non-deleted counterparts. This allows for tapes to be
squeezed while still isolating the files that are likely not to be considered
important. Volumes containing deleted migrated files have
“DELETED_FILES” at the beginning of their file family.

--with-final-scan

After the file meta data has been swapped for all the files on the tape; re-read
all the migrated files on the new volume or volumes. If a file was skipped
because it was not yet copied or swapped; it will not be marked as checked
either. If this switch is used at the time of migration, then they will not been
to be re-read when ——scan-volumes is used to close the migration of the
specified volumes.

In general, it is more efficient to use this switch when only copying a single
volume's worth of files or a list of individual files. If multiple volumes are
being copied using this switch is not recommended.

See ——scan-volumes.

5.2.3 Migration file_family mangling

The file family of a destination migration volume is appended with
-MIGRATION. This is to force the migration files onto specific tapes
separate than those for general users to write to. This keeps other requests
from interweaving themselves between migration requests. After all the
volumes are successfully scanned, the file family is set back to the file family
of the original volume.

For deleted files when using ——with-deleted, the original volumes
file_family is ignored and the special file_family DELETED_FILES is used

Migration and Duplication

instead. The -MIGRATION is still appended while the volume is being
migrated.

5.3 Duplication

The process of duplication is very similar to that of migration. The
differences include:
1. The volume comments indicating that a volume has been migrated
from or migrated to will be “<-" or “->” instead of “<="" or “=>".
2. The swap step is not a complete swap of meta data like it is in
migration. Instead it registers the new file to be a multiple copy of the
original.
3. The duplication log goes to:
/var/duplication/DuplicationLog @ <timestamp>#<pid>
4. The file family is mangled by appending _copy_1 instead of
-MIGRATION. See section 1.2.2 for more information.

5.3.1 Reasons for duplication

Duplication is usually preferred over migration when:

1. A second copy of the files on tapes is desired in a new tape library. If
both tape libraries exist at the time encp is executed by the user, then
using the multiple copy feature of encp is recommended. Typically,
the second copy will be in a separate location from the original.

2. When a multiple copy write fails, but the original succeeded, a entry is
left in the active_file_copying table of the Enstore (file & volume)
database. Duplication is needed to make the second copy of these
files.

5.3.2 Duplication command

Here is an example of the primary use of this command to duplicate three
volumes worth of files to new media.’

duplicate —--spool-dir /data/data2/Migration_Spool V00000
vOo0001 V00002

A return code of zero (0) indicates success duplicating all files (or volumes) in
the argument list.

$ duplicate —--help

Usage:

duplicate [OPTIONS]... [bfidl [bfid2 [bfid3 ...]1]] | [voll [vol2 [vol3
...111 | [filel [file2 [file3 ...]]] | [voll:lcl [vol2:1lc2 [vol3:1lc3 ...]1]11]
duplicate [OPTIONS]... [media_type [library [storage_group

3 The sample command has been split onto two lines with the standard shell continuation character (\).

Migration and Duplication 7

[file_

[vol2
[vol3:

[vol3
[vol3:

[vol2
[vol3:

[file_

_h,

file.

family [wrapper]]]]]

duplicate [OPTIONS]... —--restore [bfidl [bfid2 [bfid3 ...]] | [voll
[vol3 ...]11]1 | [filel [file2 [file3 ...]]1] | [voll:1lcl [vol2:1lc2

1le3 ...]111]

duplicate [OPTIONS]... —-scan [bfidl [bfid2 [bfid3 ...]] | [voll [vol2
...111 | [filel [file2 [file3 ...]1]] | [voll:1lcl [vol2:1lc2

1le3 ...]111]

duplicate [OPTIONS]... —--migrated-from <voll [vol2 [vol3 ...]]1>
duplicate [OPTIONS]... —--migrated-to <voll [vol2 [vol3 ...]]1>
duplicate [OPTIONS]... —-status [bfidl [bfid2 [bfid3 ...]]] | [voll

[vol3 ...]11]1 | [filel [file2 [file3 ...]]1] | [voll:1lcl [vol2:1lc2
le3 ...111

duplicate [OPTIONS]... —-—show <media_type> [library [storage_group
family [wrapper]]]]]

——destination-only Used with —--status to only list output assuming
the volume is a destination volume.

——file-family <FILE FAMILY> Specify an alternative file family to
override the pnfs file family tag.

—-help prints this message

——infile <INFILE> Read target list of bfids, volumes,
volume:location_cookie pairs or paths from

Types can be intermixed.
—-library <LIBRARY> Specify an alternative library to override the
pnfs library tag.
—-make-copies <MEDIA_TYPE> [LIBRARY] [STORAGE_GROUP] [FILE_FAMILY]
[WRAPPER] Make copies of the supplied volume group.
—-make-failed-copies Make duplicates where the multiple copy write

failed.

—-migrated-from Report the volumes that were copied to this
volume.

—-migrated-to Report the volumes that were copied from this
volume.

—-migration-only Used with —--status to only list output assuming

the target is not orhas not a multiple copy.
—-multiple-copy-only Used with —--status to only list output assuming
the target is orhas a multiple copy.
——priority <PRIORITY> Sets the initial job priority. Only
knowledgeable users should set this.
—-read-to-end-of-tape Read to end of tape before starting to write.
—-restore Restores the original file or volume.
——-scan Scan completed volumes or individual bfids.
—-show <MEDIA_TYPE> [LIBRARY] [STORAGE_GROUP] [FILE_FAMILY] [WRAPPER]
Report on the completion of volumes.
—-skip-bad Skip bad files.
——-source-only Used with —--status to only list output assuming
the volume is a source volume.
——-spool-dir <SPOOL_DIR> Specify the directory to use on disk.
—-status Report on the completion of a volume.
S = State of duplication:
P = Primary/original copy; duplication
(o] Muliple copy; duplication
O = Original/primary copy
M = Multiple copy

D = Deleted state:

N = Not deleted

Y = Yes deleted

U = Unknown; failed write
B = Bad file

B = Bad file

E = Empty metadata fields

—-usage prints short help message

Migration and Duplication

—-use-disk-files Skip reading files on source volume, use files
already on disk.
—-use-volume-assert Use volume assert when scanning destination

files.

—-with-deleted Include deleted files.

—-with-final-scan Do a final scan after all the files are recopied
to tape.

--make-copies <KMEDIA_TYPE> [LIBRARY] [STORAGE_GROUP]
[FILE_FAMILY] [WRAPPER]

This switch tell duplication to find files in the specified set of volumes, that
do not have multiple copies and create multiple copies.

--make-failed-copies

When encp succeeds in writing an original copy, but fails to write a multiple
copy a table entry in the active_file copying table in the file and
volume database is left indicating how many multiple copies have failed to
be written. When duplication is executed with ——make—-failed-copies
the input file list to duplicate is chosen from the contents of the
active_file_copying table.

If this version of duplication is run on a non-admin and non-trusted PNFS
filesystem, then the /pnfs/fs/usr/Migration/ directory is not used
and instead .m.<original_name> temporary filenames are used.

5.3.3 Duplication file_family mangling

The file family of a destination duplication volume is appended with _copy_1.
This is to force the duplication files onto specific tapes separate than those for
general users to write to. This keeps other requests from interweaving
themselves between migration requests. After all the volumes are
successfully scanned, the file family is set back to the file family of the
original volume.

The purpose of using _copy_1, instead of the more obvious -DUPLICATION,
is to mimic the multiple copies feature on encp. Encp can write multiple
copies of a file to different volumes using the ——copies switch.

See the Migration file_family section for more information on the file family
when duplicating deleted files.

If --library and --file-family are used together, then some interesting things
happen. First, it is possible to end up with files on tapes with file families like
_copy_2, _copy_3, etc. if --library is used with a comma separated list of
libraries on the original copy. If duplicating a duplicated file, one with copy1
in the file family already, then the file family would contain _copy_1_copy_1.

Migration and Duplication 9

Putting these combinations together does allow for the possibility of trees of
multiple copies.

5.4 Swapping metadata

There are two ways to turn migrated files into duplicated files. One way
makes the 'original' file copy the multiple copy; the other makes the new' file
copy the multiple copy. The result of the latter will be the same as if
duplication had been used. In addition to this, there is also the ability to swap
the files on a duplicated original tapes and the new destination tape. Using the
first of the two ways to turn the files on migrated original tape into a
duplicated tape followed by a swap will have the same effect as duplication
had been used.

All three of these scripts require them to be run as user root and the
/pnfs/fs/usr/... PNFS path be mounted.

5.4.1 make_original_as_duplicate.py

To make the files on the original tape recorded as duplicates in the Enstore
database issue the following command:

SENSTORE_DIR/src/make_original_as_duplicate.py
<original_volume>

When this completes successfully the following will have happened:

1. All the successfully migrated files on the original volume will be
recorded as duplicates in the file_copies_map table for the new copies
on the destination volume(s).

2. The original volume will be marked duplicated instead of migrated or
cloned.

3. In PNFS Layer 4 for the file(s) is modified to point to the new copy in
the Enstore (file & volume) database.

There are no switches for this command. If the argument list is left blank the
help message is printed to the terminal.

The following is a simple example:

SENSTORE_DIR/src/make_original_as_duplicate.py TESTO05

making original TESTO05 as copy of the migrated files ...

make_duplicate ('WAMS122167084800000', 'WAMS121243218900000') ... OK
make_duplicate ('WAMS122167087700000', 'WAMS121243220500000') ... OK
make_duplicate ('WAMS122167090800000', 'WAMS121243222200000') ... OK

Migration and Duplication

5.4.2 make_migrated_as_duplicate.py

To make the files on the new migrated-to tape recorded as duplicates in the
Enstore database issue the following command:

SENSTORE_DIR/src/make_migrated_as_duplicate.py \
<migrated_to_volume>

When this completes successfully the following will have happened:

1. All of the files on the original volume will be recorded as primary
copies in the file_copies_map table for the new copies on the
destination volume(s).

There are no switches for this command. If the argument list is left blank the
help message is printed to the terminal.

The following is a simple example:

SENSTORE_DIR/src/make_original_as_duplicate.py TESTO05

making original TESTO05 as copy of the migrated files ...

make_duplicate ('WAMS122167084800000', 'WAMS121243218900000') ... OK
make_duplicate ('WAMS122167087700000', 'WAMS121243220500000') ... OK
make_duplicate ('WAMS122167090800000', 'WAMS121243222200000') ... OK

This version does not automatically update the system inhibit to duplicated for
the original volume like make_original_as_duplicated.py does. For proper
record keeping either use make_original_as_duplicated.py instead of this
script or manually modify the system inhibit using the enstore
volume--modify command.

5.4.3 swap_original_and_copy.py

For duplicated files, it is possible to swap which file is considered the original
and which is the duplicate. This can be done for a list of files or for all the
files on a list of volumes. The targets must refer to the current primary copy.

SENSTORE_DIR/src/swap_original_and_copy.py \
[[voll [vol2] ...] | [[bfidl [bfid2] ...]

Only duplicated files that have successfully completed the checked phase,
meaning they have been scanned, will be allowed to swap.

The following actions are taken on successful completion of this script:

1. All the files that are considered the primary copy are recorded as the
the multiple copy in the file_copies_map table in the Enstore (file &
volume) database.

2. All the files that are considered the multiple copy are recorded as the
primary copy in the file_copies_map table in the Enstore (file &

Migration and Duplication 11

volume) database.

3. PNFS layers 1 and 4 are modified to point to the new primary copy in
the Enstore (file & volume) database.

o The BFID in layer 1

o The BFID in layer 4

o The location_cookie in layer 4

o The original drive in layer 4

o The file_family in layer 4

4. Only when a volume swap is specified:

o The file_family for the new primary file volume has the _copy_1
removed.

o The new multiple copy file volume has _copy_# appended to the
file family. The # is replaced with the multiple copy count from
the file with the most other multiple copies located on other
volumes. In almost all situations this will likely be 1, but greater
numbers are possible.

There are no switches for this command. If the argument list is left blank the
help message is printed to the terminal.

Here is a simple example:

SENSTORE_DIR/src/swap_original_and_copy.py TESTO06

swapping WAMS122167084800000 ... OK
swapping WAMS122167087700000 ... OK
swapping WAMS122167090800000 ... OK

It is possible to swap files back and forth from being the primary copy to a
multiple copy. For volumes worth of files, this is done only if all files for a
volume can be swapped. Thus, it may be easy to swap a volume one
direction, but if multiple tapes were duplicated to one destination tape, then
the swap back in the reverse direction will fail until all the original volumes
are swapped in the first place. If partial volumes swaps are truly needed,
consider swapping on a per BFID basis.

There are three ways to able to use this script.

1. After duplication.

2. After migration followed by make_original_as_duplicate.py

3. After migration followed by make_migrated_as_duplicate.py
Note: The file family for the new volume is mangled differently between
number 1 than it is for 2 or 3. It may be necessary to manually change it in
order to keep everything consistent. No one wants to see an overzealous
administrator recycle a volume that really did contain primary copies of files.

It is important to make the distinction between an original copy and primary

12

Migration and Duplication

copy. An original copy is the copy of the file that resides on the first volume
that this files was ever written onto. A primary copy is the copy of the file a
user will get when they use encp to read a file from tape.

Migration and Duplication 13

Chapter 6: Cronjobs

A number of cronjobs are considered critical to having a well running Enstore
system. These critical cronjobs are delfile.py and enstore system. Most
Enstore cronjobs need to run on the same machine as one of the Enstore
servers. For example, the pnfs_monitor cronjob needs to run on the PNFS
server node.

The name of the subsection refers to the crontab file name in the crontabs
directory.

6.1 accounting_db

These cronjobs run on the same machine as the PostgreSQL accounting DB.

6.1.1 db_vacuum.py

Vacuums the accounting DB to shrink the size on disk.

Runs on Host As User Runs at

Postgres DB enstore 4:30am every day

6.2 backup

These cronjobs run on the same machine as the PostgreSQL accounting and
drive_stat databases, respectively. This grouping assumes they are running on
the same machine.

6.2.1 db_backup.py accounting

Backups the accounting database to the backup node defined in the

configuration.
Runs on Host As User Runs at
Where the backups go. enstore 1:10am every day

6.2.2 db_backup.py drive_stat

Backups the drive_stat database to the backup node defined in the

configuration.
Runs on Host As User Runs at
Where the backups go. enstore 1:05am every day

Cronjobs 14

6.3 backup2Tape

These cronjobs run on the designated “backup” node in the configuration.

6.3.1 backup2Tape

Backups the Enstore and PNFS databases to tape.

Runs on Host As User Runs at

Where the backups go. enstore 7:30am every day

6.3.2 backupSystem2Tape
Obsolete.

6.4 checkdb

6.4.1 check db.py

Loads the most recent Enstore (file & volume) database into an offline
database server and verifies that all entries are correct. As a side effect, the
inventory summary COMPLETE_FILE_LISTING web page is also

generated.

Runs on Host As User Runs at

Where the backups go. enstore Every 2 hours on the
35" minute.

6.5 checkPNFS

These cronjob(s) run on the verify node as defined in the Enstore
configuration.

6.5.1 checkPNFS

Verify that the PNES server is still running.

Runs on Host As User Runs at
Where integrity checks |root Every 10 minutes on
are run. the threes.

Cronjobs

6.6 chkcrons

These cronjob(s) run on the web server node.

6.6.1 chkcrons.py

Makes the plots of the exits statuses of the other cronjobs.

Runs on Host As User Runs at

Where the web server root Every 10 minutes on
runs. the threes.

6.7 copy_ran_file

These cronjob(s) run on the verify node as defined in the Enstore
configuration.

6.7.1 copy_ran_file

Select a random file(s) on a random tape and try to read them back. An exit
status of nine (9) on the Cronjob Status plots page indicates that the PNFS
mount point(s) are not mounted. An exit status of one (1), two (2) or three (3)
means that number of encps failed to run.

copy_ran_{file uses choose_ran file to perform the underlying actions.
There are a number of switches that can be passed to copy_ran_file or
choose_ran_file:

e -x: Enables shell verbose output. Useful for debugging.

e -V: Passes “--verbose 10” to any executed encp processes.

e -C: choose_ran_file only: Specifies that the files should not just be
randomly chosen, but they should be copied too. copy_ran_file
enables this switch when calling choose_ran_file.

e -F: Normally if the library (virtual library manager library; not
physical robot library) is busy, then copy_ran_file will skip the
transfer, since drives are not available. With this switch it will run
encp anyway. A library is considered busy there is not at lease one
idle drive. It is recommended to add admin priority for requests on
this node. The exit status returned when -F is not used and the library
is busy is zero.

e <count>: Number of tapes to check. Default is 1 if not specified.
This value must be specified in order to specify the remaining
arguments.

e <which_file>: Specifies any extra files to check on each tape beyond

Cronjobs 16

the specified <count> value. Possible values are:

o onlyran: This is the default. Only choses or copies the randomly
chosen file.
o onlyfirst: Ignore the chosen file and only use the first file on the
chosen tape.
o onlylast :Ignore the chosen file and only use the last file on the
chosen tape.
o alsofirst: In addition to the chosen file; the first file on the tape is
also used.
o alsolast: In addition to the chosen file; the last file on the tape is
also used.
o alsofirstlast: In addition to the chosen file; the first and last file on
the tape is also used.
Runs on Host As User Runs at
Where integrity checks |root Every hour on the 27"
are run. minute.

6.8 delfile

This cronjob runs on the same node that the pnfs server runs on.

6.8.1 delfile.py

This cronjob updates the deleted status of a file in the Enstore file database. It
works by looking through the files in the trash directory of pnfs for BFIDs,
marking them deleted in the Enstore file database then deleting the trash file
from the trash directory.

This cronjob should be run every five minutes. There will be a
synchronization discrepancy between PNFS and Enstore until this cronjob
runs after a file is deleted from PNFES.

Runs on Host As User Runs at

Where PNFS runs. root Every 5 minutes staring

at the top of the hour.

6.9 drives info

These cronjob(s) run on the web server node.

6.9.1 drives info

Makes a web page reporting the serial numbers of the current set of tape

17

Cronjobs

drives in use.

6.10 drivestat db

6.10.1 db_vacuum.py drivestat

Vacuums the drivestat DB to shrink the size on disk.

These cronjobs run on the same machine as the PostgreSQL drivestat DB.

Runs on Host

As User

Runs at

Postgres DB

enstore

12:30am every day

6.11 enstore db

6.11.1

6.11.2

6.12 enstore html

These cronjobs run on the same machine as the PostgreSQL enstore DB.

db_vacuum.py enstoredb

Vacuums the enstore DB to shrink the size on disk.

Runs on Host

As User

Runs at

Postgres DB

enstore

2:30am every day

enstore backup

Backups the Enstore database to the backup node as defined in the

configuration.
Runs on Host As User Runs at
Postgres DB enstore Every 10 minutes

staring at the top of the
hour.

These cronjob(s) run on the web server node.

Cronjobs

18

6.12.1

6.12.2

6.12.3

6.12.4

6.12.5

6.12.6

6.12.7

enstore_system_html.py
make_quota_plot_page
make_cron_plot_page
make_ingest_rates_html_page.py
enstore system

enstore network

get_total _bytes counter.py

6.13 enstore_plots

6.13.1 plotter.py --encp

6.13.2 plotter.py --mount

6.13.3 plotter_main.py [-m | --mount]
This cronjob script makes the plots showing the number of mounts for each
media type per day.
Runs on Host As User Runs at
Where the web server enstore Every day at 1:30am,
runs. 6:30am and 3:30pm.

6.13.4 plotter_main.py [-r | --rate]
This cronjob script plots the instantaneous network rates of all reads and
writes.
Runs on Host As User Runs at
Where the web server enstore Every hour on the 3™
runs. and 33" minute.

19 Cronjobs

6.13.5

6.13.6

6.13.7

6.13.8

6.13.9

6.13.10 plotter_main.py [-q | --quotas]

plotter_main.py [-u | --utilization]
This cronjob script makes the plots of the number of busy drives per media
type.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every hour on the 3™
and 33" minute.

plotter_main.py [-s | --slots]

This cronjob script plots the number of free, used and disabled tape slots. For
ADIC AML/2 robots this is by tower, for STK Powderhorn Silos it is by silo
and for STK Streamline 8500s this is by rail.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every hour on 10"
minute.

make_sg_plot

plotter_main.py [-e | --encp-rate-multi]

This cronjob script plots each of the 5 encp rates recorded; once for read and
once for writes per storage group.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every hour on 25"

minute.

plotter_main.py [-f | --file-family-analysis.py]

Report on the fill percentage of tapes per storage group.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every day at 11:50pm.

Plot the nuber of blank tapes available before running out or reaching the

quota.
Runs on Host As User Runs at
Where the web server enstore Every 5 minutes staring

Cronjobs

20

runs. at the top of the hour.

6.13.11 plotter_main.py [-p | --pnfs-backup]

Plots the time required to backup the PNFS databases.

Runs on Host As User Runs at
Where the web server enstore Every day at 1:15am
runs. and 1:15pm.

6.13.12 plotter.py --total_bytes
--pts_nodes=d0ensrv2,stkensrv2,cdfensrv2
—no-plot-html

6.13.13 plotter_main.py [-i | --migration-summary]

Makes plots showing how many volumes for each media type have been
migrated and/or duplicated.

Runs on Host As User Runs at
Where the web server enstore Every hour at the
runs. bottom of the hour.

6.13.14 weekly_summary_report.py

6.13.15 plotter_main.py [-t | --tapes-burn-rate]

Plots the number of gigabytes used in the last 4 months by library and also
library and storage_group pairs. Include information about how many blank
tapes are remaining, and how many tapes were used in the last week and

month.

Runs on Host As User Runs at

Where the web server enstore Every hour at the top of
runs. the hour.

6.14 inventory

6.14.1 inventory.py

Makes the web pages listing all volumes and the files on each volume. Make

Cronjobs

some of the inventory summary pages as well.

Runs on Host As User Runs at
Where the backups go. enstore Every hour on 50"
minute.
6.15 inventory web
These cronjob(s) run on the web server node.
6.15.1 cleaning_report
The CLEANING inventory page is generated.
Runs on Host As User Runs at
Where the web server enstore Every day at 12:30am.

6.15.2

6.15.3

6.15.4

runs.

noaccess-tapes

The NOACCESS and VOLUMES inventory pages are generated.

Runs on Host As User Runs at

Where the web server enstore Every 15 minutes

runs.

staring at the top of the
hour.

Vols

The files known to the robots are reported in *-VOLUMES.html. The asterisk
is represents the short name of each media changer converted to uppercase.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every day at 1:30am.

quota_alert

Makes the QUOTA_ALERT web page. Lists statistics reflecting the
projected number of days each media_type, library and storage_group triplet
will last with the current quota.

Runs on Host

As User

Runs at

Where the web server
runs.

enstore

Every day at 8:30am
and 4:30pm.

Cronjobs

22

6.16 log_html

These cronjob(s) run on the web server node.

6.16.1 getnodeinfo

The nodeinfo.html file is created. This report lists all nodes in the enstore
farmlet the kernel version, CPU speed, memory and other OS related value on

one page.
Runs on Host As User Runs at

Where the log server root Every hour at the 11"
runs. and 41* minute.

6.16.2 log_trans fail

The failed transfer report is generated. This script greps through the recent
log files and sorts the errors by volume and mover. This information can be
useful when investigating any possible patterns involving a specific tape or

drive.

Runs on Host As User Runs at

Where the log server enstore Every hour on the 45"
runs. minute.

6.16.3 STKlog

Retrieves the last 1000 lines from the each acls_host found in every
configured STK media changer. Names the output file *-log.html where *
represents the short name of the configured media changer.

Runs on Host As User Runs at

Where the log server enstore Every hour on the 2™,

runs. 17% 32" and 47%
minutes.

6.17 log_server

These cronjob(s) run on the log_server node.

6.17.1 log-stash

Zips and moves old logs files to the history directories.

Runs on Host As User Runs at

23 Cronjobs

6.17.2

6.17.3

6.18

On the 15" day of the
month at 4:30am.

Where the log server enstore

runs.

check for_traceback

This script greps the log files for any Tracebacks. Any tracebacks are
e-mailed to the addresses listed in the crons | developer_email section of the

configuration.

Runs on Host As User Runs at

Where the log server enstore Every hour on the 1*
runs. minute.
rdist-log

Copies the recent log files (that are not already copied) to the backup node for
safe keeping. After log-stash moves the old log files, the matching old log

files on the backup node are removed.

Runs on Host

As User

Runs at

Where the log server
runs.

enstore

Every hour on the 5™,
20", 35" and 50™
minutes.

pnfs_misc

6.18.1

These cronjobs run on the same node that the pnfs server runs on.

PnfsExports

This cronjob makes the /enstore/pnfsExports.html web page. It is typically
linked from the Log Files web page. It lists the PNFS mount points that are

allowed to mount pnfs.

Runs on Host

As User

Runs at

Where the PNFS server
runs.

root

Every hour on the 12"
minute.

6.18.2 pnfs_monitor

A report is made of files listed in all PNFS databases (except admin) that do
not have complete Enstore meta data. Exceptions are given to files that are
dCache volatile files, zero length dCache files and temporary NFS files

beginning with .nfs.

Cronjobs

24

Runs on Host

As User

Runs at

Where the PNFES server
runs.

root

Every day at 5:12am.

25

Cronjobs

Chapter 7: ecron

This section describes the ecron script. For Enstore it is run by crond. Then
ecron in turn starts the intended script or program to be run as a cronjob. This
allows ecron to decide if e-mail should be sent; as opposed to crond sending
an e-mail for every invocation of a cronjob. Histogram information is also
reported by ecron.

7.1 Switches

7.2 Files

-x: debugging; must be first switch if present

-q: quite output; must follow -x, go before others

-p <name>: use specified name; default is the name of the script.
-setup <products>: setup specified ups product before running cronjob
-need-enstore: Verify that Enstore is running by asking the inquisitor;
Default. -no-enstore skips this verification.

-D <key>=<value>: Specify environmental variable to pass to the
Enstore crontab script to be executed.

-d <directory>: Set the directory that will be CWD for the cronjob
script.

-c <count>: The number of failures that need to occur before e-mail is
sent. Defaultis 1.

-1: Enable logging; this is default. -no-log disables logging; use for
debugging only. Logging refers to ~/CRON/* files and accounting
DB update.

The files are located in the home area of the user executing them. Typically,
the users should only be enstore or root.

~/CRON/<cronjob_name>:
~/CRON/<cronjob_name>HISTORGRAM: Contains all the starts and
exit status of the cronjob. <cronjob_name> is the name of the script or
the value specified with -p. These values are duplicated in the
accounting DB.

~/CRON/<cronjob_name>ACTIVE: If present, this script is currently
running. This is a lock file.

~/CRON/<cronjob_name>-output: The stdout and stderr contents
from the last time the cronjob was run.
~/CRON/<cronjob_name>-output.<timestamp>: The last 5 error runs
are kept.

ecron 26

7.3 Samples

Here are two sample command lines for various cronjobs. They are color
coded to match the descriptions below.
e 27 ****root source /usr/local/etc/setups.sh; setup enstore;
$ENSTORE_DIR/sbin/ecron
$ENSTORE_DIR/sbin/copy_ran_file 1 alsofirstlast

e 5,20,35,50 * * * * enstore source /usr/local/etc/setups.sh; setup
enstore; SENSTORE_DIR/sbin/ecron rdist-log

The follow are the descriptions of the different parts of the crontab file line
when using ecron.

e Time when crond should start the scripts.

e User to run the cronjob as.

e Command line invocated by crond.

e Script to be run by ecron.
e Arguements passed to the script run by ecron.

7.4 Troubleshooting

Problems Solutions

Cronjob is active for to long and is | Determine what is the problem.
verified to still be running. Likely causes are bad disk, networking
or a server is down.

Cronjob is active for to long andis | Remove the

verified to not be running. ~/CRON/<cronjob_name>ACTIVE
file.
Cronjob is failing consistently. Check the output in the e-mail or

~/CRON/<cronjob_name>-output file.

ecron has determined Enstore to be | Verify if Enstore is down or not. If
down. Enstore is up, check if the inquisitor is
responding to commands; nothing to
do if inquisitor is not responding.

Cronjob is not getting started. Check if the line in the crontab file is
commented out.

ecron

ecron

28

Chapter 8: PNFS Maintenance

This chapter documents various PNFS related operations that need to be done
from time to time.

8.1 Adding a new PNFS Database

When a new experiment requests access to Enstore they will need to have
their own PNFS database assigned. Names for their database and database
mount point need to be chosen; it is recommended that the same name be used
for both, but this is not a requirement.

Key information that will be needed before starting this task:

1. Will this database be a new top level PNFS database area or reside
underneath an already existing PNFS database area.

2. The name of the PNFS database that will be created.

3. The name of the directory that users will see as the top of the new
PNFS database. For simplicity, it is recommended that this be the
same as #1 above.

4. The user id (UID) and group id (GID) of the group of users the new
PNFS area will be assigned to.

5. The name of the storage group that this database will be associated
with. This should match the name in #1 and #2 above, but is not a
hard requirement.

6. The name of the file family that the files will be written with. For a
new top level database this can be set to the same value as the storage
group. If not, then there is generally a reason that the owner(s) wants
to segregate there data; which likely means this should be set to
something unique.

These instructions assume that mdb is located in /opt/pnfs/tools; substitute
accordingly for your installation. Lets assume that the database name will be
called edata. The following commands are all run on the node running the
PNEFS server.
0. # source /usr/etc/pnfsSetup
1. For PNFS servers using GDBM only (PostgreSQL backed PNFS
servers do not do this step); stop the PNFS daemons.
S$pnfs/tools/pnfs.server stop
2. Create the new database.
$pnfs/tools/mdb create edata $database/edata
3. Start the new dbserver for the new database.
a. For PostgreSQL backed PNFS databases to start the newly

PNFS Maintenance 29

created PNFS dbserver:
$pnfs/tools/mdb update
b. For GDBM backed PNFS databases to restart PNFS.
$pnfs/tools/pnfs.server start
4. Find the database number for the edata database.
S$pnfs/tools/mdb show

D Name Type Status Path

0 admin r enabled (r) /srv/pnfs/db/admin

1 mist r enabled (r) /srv/pnfs/db/mist

3 mist2 r enabled (r) /srv/pnfs/db/mist2

4 flake r enabled (r) /srv/pnfs/db/flake

5 Migration r enabled (r) /srv/pnfs/db/Migration
6 edata r enabled (r) /srv/pnfs/db/edata

5. From the mdb show command, we can see that edata was assigned
database number 6. We need to create a starting point to this
database. The key command in the example(s) below is the mkdir.
The 6 (or 7) in the examples would be the assigned database number
mdb assigned. And the edata (or edata2) here refers to the name of
the directory users will see. The directory created will not be named '
(#)(name)', but this is how this special information is passed to PNFS
using the NFSv2 protocol.

o Ifthe database is intended to be a top level database in PNFS.
cd /pnfs/fs/usr/
mkdir '. (6) (edata)'
chmod 777 edata

o If the database is destined for use underneath an already existing
PNF'S database area then the cd would have been done to another
directory followed by the mkdir and the chmod. The following
example shows how this would be done to add an edata?2 PNFS
database area underneath an already existing edata PNFS
database area.
cd /pnfs/fs/usr/edata
mkdir '. (7) (edata2)
chmod 777 edata2
The rest of this example will go back to explaining how to create
the top level edata PNF'S database area.

6. We need to create the PNF'S tags in this directory. The value for the
library should match that of a library in the current configuration. In
most cases the storage_group should be set to match that of the newly
created database name, edata, in this example.”

cd edata
enstore pnfs —--library LTO4

4 For PNFS areas to be used for volatile or resilient dCache pool metadata, different tags are used. Consult
dCache documentation for instructions.

30 PNFS Maintenance

enstore pnfs —--file-family edata

enstore pnfs —--file-family-wrapper cpio_odc
enstore pnfs ——-file-family-width 1

enstore pnfs —--storage_group edata

7. Set the group to own these tags. Also, set the permission.
Tags file_family and file_family_width should be owned by the group
with permissions 664. The other three should be owned by root with
persmissions 644.
enstore pnfs —--tagchmod 644 file_ family
enstore pnfs —--tagchmod 644 file_family width
enstore pnfs —--tagchown <owner>.<group>
file_family
enstore pnfs —--tagchown <owner>.<group>
file family_ width

8. They can be checked with:

enstore pnfs --tags

. (tag) (library) = LTO4

. (tag) (storage_group) = edata

. (tag) (file_family) = edata

. (tag) (file_family width) =1

. (tag) (file_family wrapper) = cpio_odc

-rw-rw-r—— 1 root root 4 Oct 31 2001 /pnfs/fs/usr/edata/. (tag)
(library)

-rw-rw-r-—— 1 root root 3 Oct 31 2001 /pnfs/fs/usr/edata/. (tag)
(storage_group)

-rw-rw-r—— 1 edata edata 3 Jan 23 2003 /pnfs/fs/usr/edata/. (tag)
(file_family)

-rw-rw-r-—— 1 edata edata 1 Mar 1 2006 /pnfs/fs/usr/edata/. (tag)
(file_family width)

-rw-rw-r-—— 1 root root 4 Oct 31 2001 /pnfs/fs/usr/edata/. (tag)
(file_family wrapper)

At this point, if the database is being added as a sub directory underneath an
already existing PNFS database area everything is done. If the PNFS database
is a new top level PNFS database for a new group using Enstore keep
following steps 9 through 13.

9. The next step is to enable wormhole access. The conventional value
for $shmkey is 1122. The 6 is the database number from the mdb
show command.

pnfsCID="cat "/pnfs/fs/admin/etc/. (id) (config)"’
pnfs/tools/sclient getroot $shmkey 6 $pnfsCID

10. Next enable the Enstore servers to mount PNFS. Substitute “ensrvl”
in the example with the names of the Enstore server nodes. Do the
same for any user's nodes that need to mount PNFS. Be sure to verify
that the user's nodes have static IP addresses. If they have dynamic
address send email stating why this can not be completed.

$pnfs/tools/pmount add ensrvl /edata

PNFS Maintenance 31

11. Now create the mount directory on each Enstore server. Substitute the
correct rgang farmlet for ensrv in the following example.
rgang ensrv 'mkdir /pnfs/edata’

12. Next modify the /etc/fstab file for each Enstore server to contain the

line:
www—ensrvl:/edata /pnfs/edata nfs
sync, rsize=4096,wsize=4096, user, intr,bg, hard, rw, noac 0 0

The example is really one long line, but is broken into two for
readability. If the contents of /etc/fstab are governed by a
configuration management tool (like cfengine) then follow the
procedure to update the system configuration. Otherwise, an rgang
command similar to that in the preceding step will suffice.

13. Mount the new PNFES area on at least the PNFS node and the node
configured to run the copy_ran_file cronjob.
mount /pnfs/edata

14. Send an e-mail to the new group with the /etc/£stab line they will
need to add to their node's /etc/£fstab file.

8.2 Giving Systems Access to PNFS

8.2.1 Using pmount (1st method)
First look to determine if the hostname or the IP address is already assigned.
If it is then corrective actions will need to take place.

$PNFS_DIR/tools/pmount show hosts | egrep “<hostname>[|<IP address>]"

Second, the mount point needs to be obtained. In the following output, the
mount point is from the first column: /admin, /mist, etc.

S$PNFS_DIR/tools/pmount show host <hostname>

—————————— <hostname>

/admin 0 /0/root/fs/admin/etc

/mist 30 /0/root/fs/usr/mist
/mist-volmap 30 /0/root/fs/usr/mist-volmap
/£fs 0 /0/root/£fs

/£flake 30 /0/root/fs/usr/flake

Next, the new hostname will be assigned. The <hostname> value is the
hostname without any domain name included. The mount point

$ pmount add <hostname> <mountpoint>

8.2.2 Using UNIX tools (2nd method)

We assume that /pnfs/£s is mounted on the PNFS node for these steps.
These commands should be run on the PNFS server node.

32 PNFS Maintenance

First look to determine if the hostname or the IP address is already assigned.
If it is then corrective actions will need to take place.

cd /pnfs/fs/admin/etc/exports

1s -1 | egrep “<hostname>|[|<IP address>]"

1ln

Copy an existing file in this directory to a temporary file on local disk. It is
recommended that it already have the mount point you are giving access to.
Modify the now local copy of the file to just contain the mount points that the
new node will be allowed to mount. When done just copy the temporary file
to the filename of the IP address of the node gaining access to this PNFS
mount point. In the example, the 131.225.333.444 exports file is used to
create the exports file for 131.225.333.555.

‘ You can not use vi on files in this PNFS directory . Its use of temporary
files results in the file being corrupted.

131.225.333.444 /tmp/131.225.333.555
i /tmp/131.225.333.555

/tmp/131.225.333.555 131.225.333.555

Now create the hostname symbolic link to the new file. The hostname must
not contain the domain name.

-s 131.225.333.555 <hostname>

8.2.3 Trusted PNFS Nodes

Trusted PNFS nodes are allowed to have user root manipulate all filesystem
related metadata in /pnfs/£fs/usr/ style paths. All requests for trusted
access should be confirmed before granting.

To Configure a machine to be trusted, an access file with the same name as
the mounting nodes IP address needs to be created in the trusted directory.

cd /pnfs/fs/admin/etc/exports/trusted

echo 15 > 131.225.222.333

8.3 Removing Invalid Directory Entries

These files are those with a directory entry that points to an
invalid/nonexistent inode. They can be found by doing (in bash):

PNFS Maintenance 33

1. AnIs of the specific file and getting "No such file or directory".
2. An'Is | grep <basename>" and getting a file listing.

Reminder: You need to log onto the pnfs server, use the /pnfs/fs path
and be user root for these commands to work.

Notes: Taking the file /pnfs/fs/usr/mydir/myfile; <basename> refers to
myfile in the following examples and <directory> refers to
/pnfs/fs/usr/mydir.

On occasion the NFS client will continue to cache that a file was there

after it has been successfully removed from the database. Waiting a while
for the cache to clear out is the simplest option. For the impatient

you can force an unmount ("umount -f -1 ..." on linux; the second switch is ell
not one) and then remount the file to clear up the problem.

8.3.1 To remove them (1st method):

If pnfs was installed using UPS

setup pnfs

or if installed from RPM

source /usr/etc/pnfsSetup

cd <directory>
$Spnfs/tools/scandir.sh | grep <basname>

Paste the results from scandir.sh as arguments to Sclient.
Sclient <line from scandir.sh output>

Answer yes to Sclient to execute the listed sclient rmdirentrypos
command.

8.3.2 To remove them (2nd method):

If pnfs was installed using UPS

setup pnfs

or if installed from RPM

source /usr/etc/pnfsSetup

cd <directory>
$pnfs/tools/scandir.sh | grep <basname>

PNFS Maintenance

First output from scandir is the directory id, followed by the file id, then other
output then the position.

S$pnfs/tools/sclient rmdirentrypos $shmkey \
<dirID> <rmID> <position>

8.3.3 To remove them (3rd method):

Sometimes the positional way(s) does not work. Try this next where
<basename> is the name of the 'broken' file.

If pnfs was installed using UPS

setup pnfs

or if installed from RPM

source /usr/etc/pnfsSetup

cd <directory>
S$pnfs/tools/sclient rmdirentry $shmkey <dirID> \
<basename>

8.4 Restoring Tag Inheritance

By default a directory's tags point to the same tag in its parent directory. If
directories are moved around and removed; it is entirely possible that a
directory's tags point to the tags of a nonexistent directory. To fix this
requires finding out the PNFSID of the matching current parent directory's
tag. First a short example of how this can happen.

$ cd /pnfs/test/

$ mkdir xyz #make the first directory

$ cd xyz

$ mkdir abc #imake the second under the first
$ mv abec .. #move the second up a level

$ cd

$ rmdir xyz #remove the first directory

$ cd abc

$ enstore pnfs —--tags

.(tag) (library) : [Errno 2] No such file or directory: '/pnfs/test/abc/. (tag)
(library) '

. (tag) (storage_group) : [Errno 2] No such file or directory: '/pnfs/test/abc/.
(tag) (storage_group) '

. (tag) (file_family) : [Errno 2] No such file or directory: '/pnfs/test/abc/.
(tag) (file_family)'

. (tag) (file_family width) : [Errno 2] No such file or directory:
'/pnfs/test/abc/. (tag) (file_family width)'

. (tag) (file_family wrapper) : [Errno 2] No such file or directory:

PNFS Maintenance 35

'/pnfs/test/abc/. (tag) (file_family wrapper)'

1ls: /pnfs/test/abe/. (tag) (library): No such file or directory

1ls: /pnfs/test/abec/. (tag) (storage _group): No such file or directory

1ls: /pnfs/test/abec/. (tag) (file_family): No such file or directory

1ls: /pnfs/test/abec/. (tag) (file_family width): No such file or directory
1ls: /pnfs/test/abec/. (tag) (file_family wrapper): No such file or directory

To restore the storage group tag inheritance we need to first find the PNFS ID
of the /pnfs/test storage_group tag. To do this we need to obtain the PNFS ID
of the current parent directory’ then find its pointer to the PNFS ID of the first
tag.

$ enstore pnfs --id /pnfs/fs/usr/test
000100000000000000001060

$ enstore pnfs —--showid 000100000000000000001060

ID : 000100000000000000001060
Type : =——I-—-d————-

next ID : 000000000000000000000000
base ID : 000000000000000000000000
parent ID : 000000000000000000001080
creation time : Wed Oct 31 14:54:05 2001
modif. time : Wed Mar 26 09:56:05 2008
Type : Directory (Inode)
mst_dev 1

mst_ino : 16781408

mst_mode : 40755

mst_nlink 1

mst_uid : 9276

mst_gid : 1530

mst_rdev : 100

mst_size : 512

mst_atime : Wed Mar 26 09:56:05 2008
mst_mtime : Wed Mar 26 09:56:05 2008
mst_ctime : Wed Oct 31 14:54:05 2001
mst_blksize : 512

mst_blocks 1

Tag : 000100000000000000001080 The first tag pnfsid.
Group : 0

Entries : 31

Hash Function : 0

Hash Size : 128

Hash EntriesPerRow : 77

Hash Rows 2

000100000000000000001068 000100000000000000001070
Next we need to look at the contents of this first tag PNFS ID. The “next ID”
field contains the PNFS ID of the next tag in the list of tags for the directory.
“base ID” gives the PNFS ID of the directory that this tag belongs to. The
“Name” field gives the name of the Tag. Some output clipped for
compactness.

$ enstore pnfs —-showid 000100000000000000001080

ID : 000100000000000000001080
Type i —=mI——————t-
next ID : 000100000000000000001088

5 Any directory's tags could be used, but using the current parent directory makes the most sense.

36 PNFS Maintenance

base ID : 000100000000000000001060

parent ID : 000000000000000000000000
Type : Tag (Inode)
Name : library

The first tag in the list is the library tag. We are looking for the storage group
tag, so we need to take the “next ID” value and do the enstore pnfs --showid
command again.

$ enstore pnfs —-showid 000100000000000000001088

D : 000100000000000000001088
Type HEE S

next ID : 000100000000000000001090
base ID : 000100000000000000001060
parent ID : 000000000000000000000000
Type : Tag (Inode)

Name : storage_group

Next repeat this steps to find the PNFS ID of the broken tag looking through
the showid output from the broken directory and the “next ID” fields in the
tags list until the correct one (storage_group for this example) is found.

$ enstore pnfs --id /pnfs/test/abc
0001000000000000000852C0

$ enstore pnfs —--showid 0001000000000000000852C0

Tag : 0001000000000000000852D8

$ enstore pnfs --showid 0001000000000000000852D8
‘next 1D : 0001000000000000000852E0

Name : library

$ enstore pnfs —--showid 0001000000000000000852E0

Name : storage_group

Now the storage group tag has been found. We need to take these PNFS IDs
and pass it to sclient to fix the tags. Running sclient without any options
prints the help message.

/opt/pnfs/tools/sclient

USAGE : /fnal/ups/prd/pnfs/v3_1_10-f2/tools/sclient chparent <shmkey>
<objectId> <parentId>

PNFS Maintenance 37

Now we can run this command. The <shmkey> should be 1122; look in the
/usr/etc/pnfsSetup file for the shmkey line to be sure. Then we just need to
pass the PNFS ID of the broken tag we want to fix followed by the tag we
want it to inherit from.

cd /pnfs/fs/usr/test/abc
/opt/pnfs/tools/sclient chparent 1122 \
0001000000000000000852E0 000100000000000000001088

We can see the effect with the enstore pnfs --tags command.

enstore pnfs —--tags

. (tag) (library) : [Errno 2] No such file or directory:
'/pnfs/fs/usr/test/abe/. (tag) (library)'

. (tag) (storage_group) = zee

. (tag) (file_family) : [Errno 2] No such file or directory:
'/pnfs/fs/usr/test/abec/. (tag) (file_family) '

. (tag) (file_family width) : [Errno 2] No such file or directory:
'/pnfs/fs/usr/test/abe/. (tag) (file_family width)'

. (tag) (file_family wrapper) : [Errno 2] No such file or directory:
'/pnfs/fs/usr/test/abec/. (tag) (file_family wrapper)'

1ls: /pnfs/fs/usr/test/abc/. (tag) (library): No such file or directory
-rw—-rw-r—— 11 enstore enstore 3 Oct 31 2001
/pnfs/fs/usr/test/abec/. (tag) (storage_group)

1ls: /pnfs/fs/usr/test/abc/. (tag) (file_family): No such file or directory
1ls: /pnfs/fs/usr/test/abc/. (tag) (file_family width): No such file or directory
1ls: /pnfs/fs/usr/test/abc/. (tag) (file_family wrapper): No such file or
directory

Repeat this procedure with the remaining broken tags.

8.5 Fixing Broken Tags

A tag becomes invalid when there is no 'local' tag value and the parent tag it
references does not exist. Sometimes it is necessary to forcibly rewrite the
local portion of the tag to clear the 'invalid' status. The “0 0 10” are 'magic
values' from the PNFS developers® that are the level, offset and size,
respectively.

source /usr/ec/pnfsSetup
S$pnfs/tools/sclient writedata $shmkey \
<tag pnfs id> 0 0 10

6 Patrick Fuhrmann

38 PNFS Maintenance

Chapter 9: Configuration File

9.1 Configuration Descripton

The Enstore configuration file is a native python file. This allows for a lot of
flexability in setting up the configuration.

9.2 Useful Shortcuts and Variables

9.3 Non-server Entries

9.3.1 blocksizes

This section defines the block sizes used when reading and writing different
media types. The media types listed are the valid types available for the
enstore volume -add command in section 1.24.

configdict['blocksizes'] = { 'SMM' : 131072,
'DECDLT" :131072,
'9840" :131072,
'9940" : 131072,
'9940B' : 131072,
'3480" : 131072,
LTO' 1131072,
TTO2'" :131072,
LTO3" :131072,
TTO4'" :131072,
null' : 131072,
'diskfile' : 512,

}

9.3.2 crons

These values are used by the cronjob scripts to know the locations of various
files or directories, hostnames and e-mail addresses. Every site needs to
define there own values for html_dir, log_dir, backup_dir and monitoring and
web.

Configuration File 39

configdict['crons'] = {

#'www_alias' : www_alias, #optional
#'conf_alias' : conf_alias, #optional
#pnfs_alias' : pnfs_alias, #optional
'web_node' : monitoring_and_web,
'html_dir' : html_dir,

'log_dir’ : log_dir,

'tmp_dir’ : "/tmp",

‘email’ : "enstore-auto@fnal.gov",

'developer_email' : “enstore-devel @fnal.gov"
‘backup_node' : enstore_backup,
‘backup_dir’ : backup_dir,
'monitored_nodes' : [

"ensrv0",

"ensrvl",

"ensrv2",

"ensrv3",

"ensrv4",

"ensrvs",

1,
'farmlets_dir' : "/usr/local/etc/farmlets”,
url_dir' : "http://www-en.fnal.gov/enstore/",
#'test_library_list' : [“test-9940B™],
}

e www_alias, conf_alias and pnfs_alias are optional DNS names to
identify the web server host, configuration server host and PNFS
server host. These are not required for Enstore to work, however they
can be used to more easily move services from one node to another.

e web_node is the host name of the web server.

e html_dir is the directory that the inquisitor, alarm server, monitor
server and many cronjobs write html, jpg, gif and other web content
too.

e log_dir is the directory that the log server writes the log files into.

e tmp_dir can be used to use a different temporary directory for some
cronjobs.

e email specifies the comma separated email addresses operational
important errors should be sent to.

e developer_email will at most sites be the same as email.

e backup_node defines the host that the Enstore DB and PNFS DB
backups are copied to.

e backup_dir is the directory on the backup_node that the Enstore DB
and PNFS DB backups are copied to.

e monitored_nodes specifies the list of host names to limit the

40

Configuration File

http://www-en.fnal.gov/enstore/

generation of cron job status plots. In all likelihood this should
contain the current names of all the Enstore server host names; not the
mover host names.

e farmlets_dir specifies the location of the farmlets files.

e url_dir indicates the base URL value for the Enstore systems web area.
It is used by some cron jobs that create pages in sub directories to
point to images or other web pages in this top level URL directory or
predetermined sub directories.

e enstore_name should contain a unique string that defines what this
instance is used for. Likely considerations include naming production
and test stands differently. For sites with multiple production Enstore
systems, this allows them to be given human differentiable names.

e test_library_list is used by choose_ran_file and copy_ran_file to
exclude the supplied list of libraries.

9.3.3 crontabs

This section defines which nodes should run which cronjobs. If the primary
key matches the name of an Enstore server then those crontab files are copied
to /etc/cron.d by install_crons.py. Primary keys examples are log_server
and accounting_server. The files that install_crons.py copies to
/etc/cron.d are listed in each cronfiles subsection. For the log_server,
there are log_server and log_html. If the primary key is not an Enstore
server, verifying and pnfs, are two such examples, then a host subfield is
required.

Configuration File 41

configdict['crontabs'] = {

'log_server' : {'cronfiles' : ["log_server",
"log_html",
1}

'web_server' : {'cronfiles' : ["enstore_plots",
"enstore_html",
"inventory",
"chkcrons",
#"tab_flipping",
1,

'host' : monitoring_and_web},
‘verifying' : {'cronfiles' : ["checkPNFS",

"copy_ran_file",
1,

'host' : verify_host},

'pnfs' : {'cronfiles' : ["delfile",
"pnfs_misc",
1,

'host' : enstore_pnfs},
‘accounting_server' : {'cronfiles' : ["accounting_db"]},
'drivestat_server' : {'cronfiles': ["drivestat_db"]},
'file_clerk’ : {'cronfiles' : ["enstore_db"]},
'databases' : {'cronfiles' : ["backup”,

#"backup.operation",
#"backup2Tape",
1,

'host' : enstore_backup},

9.3.4 database

The volume clerk, file clerk and info_server share a single PostGreSQL
database. The shared information for these servers to locate the database is
placed here.

configdict['database'] = {
'dbname': 'enstoredb’,
'dbhost": DB_host,
'dbport': 8888,
'dbuser": 'enstore’,
'dbserverowner': 'products',
'dbarea’:'%s/enstore-db' % (db_basedir,),

}

42 Configuration File

9.3.5 discipline

Discipline is used to limit the number of simultaneous transfers for a node.
Nodes containing the string saen will be limited to 2 simultaneous transfers
for the null library (2™ argument in the 'args' list. For mover with already
mounted tape it is allowed 1 more simultaneous transfer for read request (3™
argument) and 1 more simultaneous transfer for write request (4™ argument).

configdict['discipline'] = {
‘null.library_manager":{ 1:{'host":"saen",
'function’:'restrict_host_access',
‘args":['saen’,2, 1, 1],
'action':'ignore'},
1
1

9.3.6 encp

The CRC seed for new sites should set this to 1. For older sites, consult
knowledgeable experts. If the this value is missing from the configuration file
then the crc_seed will default to 1.

configdict['encp'] = {'crc_seed' : crc_seed,

}
9.3.7 inventory
configdict['inventory'] = {
'inventory_dir' : inventory_dir,
'inventory_tmp_dir' : "%s/tmp" % (inventory_dir,),
'inventory_cache_dir' : "%s_cache" % (inventory_dir,),
'inventory_extract_dir' : "%s/extract" % (inventory_dir,),
'inventory_rcp_dir' : '%s:%s/tape_inventory' % (monitoring_and_web,
html_dir,),
'wpa_states' :["full", "readonly"],
'wpa_excluded_libraries' : ["samnull", "testlto", "testlto2", "TEST-9940B
", "DO-LTO4GI1T"],
}

e inventory_dir:

e inventory_tmp_dir:

e inventory_cache_dir: Directory where a local on-disk copy of the
inventory is kept to skip processing volume metadata that has not been
modified since the previous time the inventory cronjob was run.

e inventory_rcp_dir: Remote host and directory to copy the output files
to once they are done being generated.

e wpa_states:

e wpa_excluded_libraries:

Configuration File 43

9.3.8 priority

The most common use of the priority section is to bestow admin_priority to
encp transfers. In the following example the null library manager will assign
adminpri priority to encp transfers running from the verify_host as user
enstore.

configdict['priority'] = {
‘null.library_manager": {'adminpri':{2:
{'host": verify_host,
'uname':'enstore’,
#'storage_group':'null_groupl’,
#'work' : 'write_to_hsm',
#'work' : 'read_from_hsm',
|2
1
1,

e host: if defined limits the admin priority to encp transfers from this
host.

e uname: The user name of the owner of the encp transfer.

e storage_group: Limit these privileges to certain experiments or
groups.

e work: may be write_to_hsm or read_from_hsm. These limit the
priority setting to just writes or reads, respectively.

9.3.9 wrappersizes

9.3.10

There are only three defined file wrappers for Enstore. These wrappers are
used to “wrap” metadata onto the media with the data file. These values are
what needs to be inserted into the PNFES file_family_wrapper tag, see

configdict['wrappersizes'] = { 'null' : (100L*GB) - 1,
‘cern’ : long("9"*20),
‘cpio_odc' : (8L*GB) - 1,
}

web_server

These are the values used by the post installation steps of the
enstore_html.rpm.

configdict['web_server'] = {
'ServerHost' : web_server_host,

'User’ : 'enstore’,
'‘Group' : 'enstore’,
‘port' : 80,

Configuration File

'‘ServerName' : '%s.fnal.gov' % (www_alias,),
'DocumentRoot" : "%s/html" % (httpd_dir2,),
'ScoreBoardFile' : "%s/apache_status" % (httpd_dir,),
'PidFile’ : "%s/adm/httpd.pid" % (httpd_dir,),
'ErrorLog' : "%s/adm/error.log" % (httpd_dir,),
'‘CustomLog' : {
'‘combined' : "%s/adm/access.log" % (httpd_dir,),
referer' : "%s/adm/referer.log" % (httpd_dir,),
‘agent' : "%s/adm/agent.log" % (httpd_dir,),
1
'‘ServerRoot' : '/etc/httpd/',
‘ScriptAlias' : {
'fake' : '/cgi-bin/',
‘real' : "%s/cgi-bin/" % (httpd_dir2,),
}

}

9.4 Server Entries

Common Entries: The host, port andlogname fields are mandatory. The rest

are optional.

1. host — The hostname of the machine the Enstore server will run on.

2. hostip — Performs the same function of host. The additional
functionality is to specify a single IP address for Enstore use on
multi-homed machines.
port — The port number the Enstore server should listen on.

4. logname — The name of the server that appears in the logfile. Should
be between 2 and 8 characters; but this is not a hard limit.

5. ing_ignore — If this is defined, then the inquisitor will not monitor the
server. This is recommended for test library manager, test media
changes and test movers.

6. norestart — This configuration item lets the inquisitor to know not to
restart the server if it is found to be down.

7. noupdown — The “enstore system” process will not look at the
corresponding server when generating the Status At-A-Glance web

page.

el

9.4.1 alarm_server

The only unique configuration information for the alarm server is
alarm_actions. The only currently defined actions are for sending some
e-mailable alarms straight to users instead of putting it on the alarms page. If

Configuration File 45

the storage group is not found here then the default is to place the alarm on the
alarms web page.

configdict['alarm_server'] = {
'host":alarm_server_host,
'port': 7503,
'logname':' ALMSRV',
‘norestart":'INQ',
‘alarm_actions' : {'C': [['send_mail', '*',
{
'sdss' : 'sdssdp@fnal.gov',
}
1
['send_mail’, '1',
{'cms' : 'cms-t1 @fnal.gov',
}
1,
I}

}

e alarm_actions: The alarm type value, C in the preceding example,

must be one of the following list:

e A for aregular alarm

e E for an error alarm.

e U for a User error/alarm.

e W for a Warning alarm.

e [for Information only alarm.

e C for an E-mailable alarm.
There is little functional difference among these types of alarms. What
is different is the single letter log message designation when the alarm
is logged with the log server.
When an alarm type of C is received by the alarm server it looks
though list of possible actions. Currently only send_mail is defined. It
has limit value. Either * or 1 for send an e-mail for every occurrence
of the same alarm or only send it once via e-mail then put it on the
alarms page for every occurrence after that, respectively. The third
element in these lists is a dictionary paring the storage group to an
e-mail address or a list of comma separated e-mail addresses.

9.4.2 event_relay

The event_relay does not contain any non-common server configuration
items.

Configuration File

9.4.3 log_server

configdict['log_server'] = {

'host":log_server_host,

‘port':7504,

'norestart":'INQ’',

‘msg_type_logs": {'MSG_TYPE=MC_LOAD_REQ' : MOUNTS-',
‘MSG_TYPE=MC_LOAD_DONE': MOUNTS-',
'MSG_TYPE=ENCP_XFER' :'ENCPS-,
'MSG_TYPE=EVENT_RELAY' : 'EVRLY-,
'MSG_TYPE=ADD_TO_LMQ' :'LMQADDS-'},

'log_file_path':log_dir,

}

e log_file_path refers to the directory that the log files are to be written
into. In the example, the log_dir variable is used to hold the actual
directory name.

e msg_type_logs

9.4.4 file clerk

configdict['file_clerk'] = {
'host":file_clerk_host,
‘port:7501,
'logname’:'FILSRV",
'norestart":'INQ',
'brand":'DOMS’,

e brand: Brand is an optional field. If set it names characters that appear
at the be beginning of every bit file id (BFID). If this is not set, then a
suitable brand string is determined based on the hostname. There is no
limit on the length, though 4 alpha numeric characters is
recommended. The last brand character must be alphabetical only.
This field is used to differentiate different Enstore systems running at a
single site; in which case it is strongly recommended to be used.

Configuration File 47

9.4.5 volume_clerk

configdict['volume_clerk'] = {
'host":volume_clerk_host,
‘port':7502,
'logname:'VOLSRV',
'norestart":'INQ’',
'max_noaccess_cnt' : vol_max_noaccess_cnt,

® max_noaccess_cnt:

9.4.6 info_server

configdict['info_server'] = {
'host": info_server_host,
‘port: 7777,
'logname': INFSRV',
'norestart":'INQ’',

}

9.4.7 pnfs_agent

Reserved for future use.

9.4.8 monitor_server

configdict['monitor_server'] = {

'html_dir' : html_dir,

'html_gen_host' : web_server_host,

'refresh’ : 3600,

'veto_nodes' : {'watertaxi": 'not in system my reason'},
'block_size' 1 65536,

'block_count' : 160,

'default_timeout' : 3,

}

e html_dir: Must point to the same location as the html_dir field in the
crons section of the configuration file.

e html_gen_host: This refers to the host running the monitor server that
also is running the web server. It is important for the monitor server
specified here to be running all the time.

e refresh:

e veto_nodes: This is a list of hosts to skip during the enstore
network check. A reason for each host is also allowed.

e block_size and block_count: These two values multiplied together
represent the amount of data sent during each enstore network
rate test performed. The values listed in the example are known to

48

Configuration File

work well for Fast Ethernet speeds.

e default_timeout: Amount of time to wait for a response from a
monitor server running on each node. After this timeout enstore
network skips to the next node in the list.

9.4.9 ratekeeper

configdict['ratekeeper'] = {
'host’ : ratekeeper_host,
‘port' 1 55511,
'norestart’ - 'INQ),
noupdown'’ :'efb’,
'logname’ :'RATSRV/,
'dir’ : ratekeeper_dir,
'tmp' : "%s/tmp/" % (ratekeeper_dir,),
ps' . '%s/*rates.ps' % (html_dir,),
pg' : '%s/*rates.jpg' % (html_dir,),
'stamp' . '%s/*rates_stamp.jpg' % (html_dir,),
}

e dir: Deprecated field that names the directory where the ratekeeper
rate files are written into. This information be default is automatically
inserted into the accounting database. If this field is set then the rate
information is written to the text files and the database.

e tmp, ps, jpg and stamp: These are deprecated fields used by makeplot.
The enstore plot command has superseded makeplot.

Configuration File 49

9.4.10 library_manager

H H* I

}

configdict['9940B.library_manager'] ={

'host":library_manager_host,
'port':7522,
‘encp_port':7523
‘mover_port':7524
'logname':'9940BLM,
norestart":'INQ’,
'blank_error_increment':'5’,
‘max_encp_retries':3,
'max_suspect_movers":'3’,
'max_file_size":(200L*GB) - 1,
'min_file_size':100*MB,
'CleanTapeVolumeFamily': 'CLEAN.CleanFileFamily.noWrapper',
'suspect_volume_expiration_time":3600%24,
'legal_encp_version":legal_encp_version,
'storage_group_limits":{'cms": 10,
'cdf’:10,
'DO":10,
}s
‘max_requests': 10000,
'lock':"nowrite",

All the library manager specific configuration options are optional.

e encp_port: An alternate port that only encp v3_8 and later uses for
submitting file requests. This is an optional value and the default for
encps is to use regular port number if this is not specified.

e mover_port: An alternate port that only movers use for
communicating with the library manager. This is an optional value
and the default for movers is to use regular port number if this is not
specified.

e blank error_increment: In case of FT'T EBLANK errors, do not set
the volume NOACCESS until the error count is greater than
(max_suspect_movers + blank_error_increment). This is an optional
value and the default is 5.

e max_encp_retries: This allows an administrator to up the number of
attempts encp can try to this library before it gives up because of two
many errors. This is an optional value and the default is 3.

e max_suspect_movers — This value is the number suspect movers that a
single volume read or write can fail on before the volume is set
NOACCESS. This is an optional field and the default is 3.

e max_file_size: This represents the maximum filesize that can be

50

Configuration File

written to this library. This should be set to the maximum size of the
associated media. If not present the default is 2GB - 2kb.

e min_file_size: Minimum size that is allowed to write to tape. This
would allow an administrator to prevent a user from writing small files
into permanent media storage. This is an optional field and the default
is 0.

e CleanTapeVolumeFamily: This lists the volume family for the
cleaning tapes belonging to this library manager.

e suspect_volume_expiration_time: Duration a volume will remain
blacklisted from a particular mover. See also—get-suspect-vols. The
default time is 24 hours.

e legal encp_version: This is the oldest version of encp allowed to
access the system. An example value would be v3_7. As of March
21 2008 this value is v3_6c. This is an optional field.

e lock: This is the default state the library manager will go into when
started or the enstore library —stop-draining command is issued. The
possible values are: pause, lock, noread and nowrite. See the section
1.8 for more information.

e storage_group_limits — Sets the fair share limits for the specified
storage groups to access tape drives. This is optional and by default
there are no fair share limits.

e max_requests — The maximum number of requests the library manager
will place into the queue. An admin priority request will always be
added to the queue, even if it means exceeding this limit. When the
limit is reached and a new (non-admin) request arrives the library
manager will reply to the the encp with a successfully queued request
message, but will not add it to the queue. Encps resend pending
requests every 15 minutes’, if the queue is not full then, the request
will be added to the queue. This is optional and the default .is 2000.

7 Encps resend pending requests every 15 minutes by default. It is possible to modify that time using the encp
—resubmit-timeout switch.

Configuration File 51

9.4.11 mover

configdict['null.mover'] = {
'host":'enmvrla’,

‘port: 7530,
'logname":'NULMV',
'norestart”:'INQ’,
'max_buffer':50*MB,
'library":'null.library_manager’,

'library"['test.library_manager', 'null.library_manager'],
'device":'/dev/null’,
'driver':'NullDriver',

'mc_device"'-1',
'media_changer":'null.media_changer’,

}

configdict['D31DLTO.mover'] = {
'host': 'enmvrl7a’,
'port': 7545,
'logname': 'D31DMV’,
‘noupdown':'dmb’,
'ing_ignore':'dmb',

'data_ip"'enmvrl7a’,

'do_eject"'yes',
'statistics_path': '/tmp/enstore/enstore/D31DLTO.stat’,
'max_consecutive_failures': mvr_max_consecutive_failures,
'max_failures': mvr_max_failures,

‘'failure_interval' : 3600,
'compression':0,
'check_written_file'": Ito_mvr_check_f;,
'max_buffer' : 1*GB,

'min_buffer' : 8 * MB,
'max_rate":Ito_rate,
'mount_delay':30,
'max_dismount_delay":max_dismount_delay,
'dismount_delay':dismount_delay,
'update_interval':5,
'library": 'testlto.library_manager',
'device' : '/dev/rmt/tpsOd4n’,
'driver' : 'FTTDriver',
'mc_device:'D31D’,
'media_changer':'aml2.media_changer’,
'syslog_entry":low_level_diag_pattern,
'do_cleaning:'No',
'norestart”:'INQ’,

'send_stats"1,

'connect_timeout' : 5,

'connect_retries' : 4,

}

Configuration File

configdict['disk.mover'] = {
'device":'/data’,
'type':'DiskMover',
'host":'rain’,
'hostip":'131.225.84.108",
'ip_map':'rain’, #disk mover only
'port:7531,
'library':['disk.library_manager',] ,
'driver":'DiskDriver’,
'mc_device':'l",
'logname":'DISKMV',
'update_interval:5,
'connect_timeout': 10,
'connect_retries':15,

}

connect_timeout: The number of seconds to wait for a connection to
the encp process to be established. Default is 15 seconds. This
timeout is waited for connect_retries number of times.
connect_retries: The number of times the mover tries to connect back
to the requesting encp process. Default is 4 which yields 4 total
attempts. The length of each connection attempt is defined by
connect_timeout.

dismount_delay: Number of seconds a mounted volume should stay
mounted in a drive without a new request for the mounted volume. If
the counter expires the volume is dismounted. This is useful in use
cases where a new request might take longer than the default 60
seconds to arrive at the library manager; where it higher than 60 is
hoped to prevent frequent mounts and dismounts of the same volume
over and over again. Setting this value to high for general use may
impact other requests waiting for a mover in an otherwise idle Enstore
system. Setting this to a negative value will prevent the volume from
being automatically dismounted. See the encp --dismount-delay
switch for specifying this value for a single encp's amount of files.
failure_interval: If the max_failures number of error occurs
within this number of seconds the mover will go offline. Default is
3600 seconds (1 hour).

get_remaining_from_stats:

library: The name of the library manager to contact for work. This
value can be a single string or a list containing the libraries to contact.
The order the library managers are contacted is the order listed in the
configuration.

log_state:

max_buffer: Maximum amount of memory the mover should use
when buffing data on and off of tape. This value is optional and
defaults to 8 MB in bytes.

max_dismount_delay: Maximum number of seconds that can be set in

Configuration File 53

for the dismount delay. In a proper configuration this will always be
grater than or equal to the dismount delay. This value is more useful
as a way to limit the values specified using the encp --dismount-delay
switch.

e max_consecutive_failures: This number of consecutive errors will set
the mover offline. Default is 2.

e max_failures: This number of errors in the failure_interval
will set the mover offline. Default is 3.

e max_in_state_cnt:

e max_rate: Highly recommended optional value to specify the
maximum write rate of the drive. Defaults to 11.2 MB per second.

e max_time in_state:

e media_changer: The name of the media changer to contact for
mounting and dismounting volumes. This value is not specified for
disk movers.

e min_buffer: Minimum amount of memory the mover allocates for
buffering the data transfer. This value is optional and defaults to 64
MB in bytes.

e mount_delay: Number of seconds to wait after media changer mount
completes before opening the tape device (i.e. /dev/rmt/tpsOdOn or
/dev/null). This is an optional value with the default for tape movers
15 seconds and for null movers 0 seconds.

e restart_on_error: The mover restarts itself automatically if it does into
the error state. Default does not restart. Set to 1 to enable this feature.
Most modern drives, like 9940A/B and LTO, are reliable enough that
when the movers go into error state something is likely wrong.

e send_stats: Send the drive statistics to the drivestat server to be
inserted into the drive statistics database table; which are used to
populate the tape drive statistics web page. Optional boolean value;
default is 1 for enabled.

e statistics_path:

e update_interval: Interval in seconds between requests of the mover to
the library_manager requesting the next item in the queue. Optional
value, default is 15 seconds. Smaller values are better when the use
case is to submit one request at a time, instead of submitting multiple
requests from the beginning.

The following are mover type specific values.

e device:

O Tape movers: This represents the path to the tape drives device
file. An example on Linux would be: /dev/rmt/tpsOd1n.®
O Disk movers: This represents the path to use for writing

8 The /dev/rmt/tps*d*n pattern is not the native Linux tape device. See the FTT mkscsidev.Linux utility for
more information into creating Enstore compatible tape devices.

54 Configuration File

incomming files. If multiple disk movers are running on a single
host, they should have unique paths.

O Null movers: /dev/null

driver:

O Tape movers: FTTDriver

O Disk movers: DiskMover

O Null movers: NullDriver

mc_device:

O Tape movers: This field tells the mover the name the robot calls
the attached tape drive. For STK robots an example value is the
comma separated value: 1,1,10,8. For ADIC robots an example
value is: D41D.

O Disk movers: 1

O Null movers: -1

The following are tape mover specific values.

blank_error_increment:

check_first_written_file: This enables a re-read of the first written file
after a tape is mounted to recalculate and verify the CRC of the file on
tape. Default is 0, which disables this check.

check_written_file: This enables a periodic check after a file is written
to tape. It looks for silent corruptions in the data while the file was
being written. If this value is greater than 0, it randomly re-reads
newly written files to recalculate the CRC as often as the value
specifies. A value of 1 will run this check after every file. Default is
0, which disables this check.

Compression: This is considered an optional configuration value.
However, in almost every situation it should be set to 0. Anything else
(including None) will enable drive compression of the data. Enabling
drive compression is not recommended because of the reduced drive
rates and compressing already compressed data (from compress or
gzip) increases the size of the data on tape.

do_cleaning: Enable the mover to clean the drive when the cleaning
bit is set on the drive.

do_eject: Eject the tape on dismount. This is enabled by default.
Possible values are yes and no.

media_type:

single_filemark: Default value is 0. Recommended value is 1 for
most modern drives. Some older drives (Mammoth 1 for example)
designated End-of-Data with two consecutive file marks. Thus, it is
important after every write for two file marks to be written. This has
the downside that when writing many files sequentially, the tape first
must be rewound to between the two file marks before the next file can
be written. Stopping, rewinding and writing after each file takes a

Configuration File 55

longer time and puts more ware and tear on the tapes and the drives
than does writing one file mark then starting to write the next file.

e syslog_entry: Expression to match in the Linux syslog for the low
level drive failure diagnostics. This value is optional. A typical value
is sense | st [0-9] when it is set.

The following are disk mover specific values.

e type: Technically, this is not specific to disk movers, but is only
required to be set by them, since the default is for Tape/Null movers.
The default is the empty string (“”’), but the other possible values are:
Mover and DiskMover for Tape/Null and Disk movers respectively.

56

Configuration File

9.4.12 media_changer

}

}

configdict['SL8500.media_changer'] = {
'host":media_changer_host,
‘port':7508,
'logname":'SL8500MC",
'type''STK_Medial.oader,
norestart':'INQ’,
‘acls_host":'fntt-gcc',
'acls_uname':'acsss',
'‘DriveCleanTime": {'LTO3":[60,1],

'LTO4":[60,1],
b

'tape_library":"GCC StreamLine 8500",

configdict['aml2.media_changer'] = {
'host":media_changer_host,
‘port':7525,
'logname':'AML2MC',
'type':'AML2_Medial.oader',
norestart’:'INQ’,
'RobotArm':'Both’,
'IdleTimeHome':30000000,
'DriveCleanTime':{'DE":[60,1],

'DC':[60,1],
'DM':[60,1],
'D3":[120,2]
I8

'TOBoxMedia'": {'ACI_8MM"['EO01','E08'],

'‘ACI_LTO":['E03','E05','E06],
'ACI_DECDLT":['E02',"E04','E07']},

'tape_library':"DO AML/2",

e type: This field declares the type of robot that this media changer will
be interfacing with. Valid values for this field are:

(@]

STK_MedialLoader for StorageTek (now Sun Microsystems) 9310
Powderhorn Silos and StreamLine 8500s.

AML2_MedialLoader for ADIC (now Quantum) AML/2
Quadratower or the AML/J.

RDD_MedialLoader for manually loading a tape.
MTX_Medial.oader for Overland 8000 stackers.
IBM_Medial.oader for IBM robots using SMC.

Configuration File 57

It is important to note that there is not a media changer for disk
volumes.

e DriveCleanTime:

e tape_library: This is the string identifying the associated robot. This is
an optional value, but is very useful to differentiate robots for a site
that has multiple robots of the same type (i.e. “STK Silo room1”” and
“STK Silo room2”). One ramification of not specifying this value will
be that the Slot Usage and Drive Utilization plots will not be created.

For configuration items specific to the STK_Medial.oader:

e acls_host: The name of the host running the STK robot(s).

e acls_uname: The name of the user used to rsh as into the acls_host.
For configuration items specific to the AML2_MedialL.oader:

e RobotArm: Specifies which side of the AML/2 the media changer
controls. R1, R2, or Both are the valid values. For AML/J use R1.

e IdleTimeHome:

e IOBoxMedia:

For configuration items specific to Manual_Medial.oader:

e test: If this is any value that evaluates to boolean true; then the dialog
box asking for confirmation that the tape has been inserted into the
drive includes additional button choices. The additional button choices
name specific errors to simulate for testing purposes.

58

Configuration File

Chapter 10: Restoring Enstore and PNFS
databases

10.1 Rebuilding a PNFS database from an
Enstore Database

However unlikely and unfortunately you may need to rebuild a set of PNFS
database from the Enstore file and volume database. Some issues will arise
from this. First, is that the database number in the PNFS IDs will almost
certainly not match the new database number that will be assigned to the same
database name. This will not pose a problem for the active files being

restored, but maybe confusing for someone investigating what happened to a
deleted file.

First, extract the tag information for each directory. This will dump the results into a text
file, named /tmp/tag_dir_dump in the example, so that the directory structure complete with
tags can be recreated. Most likely the default port (8888) and user/role (enstore) will be
used; if on the same host as the database the “-h <hostname>" may be left off. The
example also assumes that the enstore database name is enstoredb.

$ psgl -h <hostname> -p 8888 enstoredb -U enstore -c "
select library, storage_group, file_family, wrapper,

rtrim(pnfs_path, '0123456789abcdefghi jklmnopqgrstuvwxyzABCDEFGHIJKLMNOPQRSTU
VWXYZ. —-+=') as dirname
from file, volume
where file.volume = volume.id
and file.deleted = 'n';
" > /tmp/tag dir_dump

Next, we find just the unique combinations of directories and tags. The first sed removes
any empty lines. The second sed removes the first two lines and the last line. Then the list
is sorted and the duplicate values are consolidated together.

$ sed '/*$/d' /tmp/tag dir dump | sed -e '1l,2d' -e '$d' \
| sort | uniq -c > /tmp/tag dir_dump_uniq

The new databases need to be (re)created. See the PNFS Maintenance chapter, section
“Adding a new PNFS Database” for more information.

Use the information from the previous step to decide what are the appropriate tag values for
the top directory for each PNFS database mount point. The directions for setting these top
level tags are included in that text and not repeated here.

Restoring Enstore and PNFS databases 59

Now, the directory structure can be recreated. We simply loop over the unique list of
directories using mkdir -p. This is best done on a machine that has both the /pnfs/xyz
and /pnfs/fs/usr/xyz style mount points mounted. Also, the node this command needs to be
run as root on a trusted PNFS machine.
awk '{print $10}' /tmp/tag_dir_dump_uniq | while read line; do

echo mkdir -p $line;

mkdir -p $line;
done

At this point, root owns all the newly created directories. They need to be set to each
storage groups group UID and GID. This information is not in the Enstore DB, which
requires some level of intuition to pick an appropriate value. And it is likely that some of
them will end up incorrect. However, each user/group should be able to fix any remaining
incorrect ownership issues on their own.

chown -R <UID1>.<GID1l> /pnfs/<mount_point_1>

chown -R <UID2>.<GID2> /pnfs/<mount_point_2>

The tags also need to be corrected to reflect where new files should be written. The
following command will report on differences between tags. Note: directories with multiple
libraries specified will not be caught by this check; those need to be handled by the
administrator doing the rebuild.

cat /tmp/tag dir_dump_uniq | while read line; do
#Get the tags from the database dump.
library="echo $line | awk '{print $2}'";
storage_group="echo $line | awk '{print $4}'";
file family="echo $line | awk '{print $6}'";
wrapper="echo $line | awk '{print $8}'";

#Get the directory we are currently looking at.

dname="echo $line | awk '{print $10}'";

if [-d $dname]; then
#Get the tags currently in pnfs.
p_library="enstore pnfs —--tag library $dname";
p_storage_group="enstore pnfs —--tag storage_group $dname";
p_file_family="enstore pnfs --tag file_family $dname’;
p_wrapper="enstore pnfs —--tag file family wrapper $dname";

#Report which tags differ from what PNFS currently has.

if ["$library" != "$p_library"]; then

echo "library ($p_library, $library) differs for $dname";
fi;
if ["$storage_group" != "$p_storage_group"]; then

echo "storage_group ($p_storage_group, $storage_group) differs
for $dname";
fi;
if ["$file_family" != "$p_file family"]; then
echo "file_family ($p_file_ family, $file_family) differs for

60 Restoring Enstore and PNFS databases

$dname";

fi;
if ["$wrapper" != "$p_wrapper"]; then
echo "wrapper ($p_wrapper, $wrapper) differs for $dname";
fi;
else echo "$dname does not exist";
fi;

done

Dump the non-deleted bfids from the database. Migration originals and
duplication/multiple copies need to be handled special.

$ psql -h <hostname> -p 8888 enstoredb -U enstore -c "
——Find normal file bfids, skip migration originals, skip multiple copies.
select file.bfid
from file
where deleted = 'n'
and bfid not in (select alt_bfid
from file_ copies_map
where alt_bfid = file.bfid)
and bfid not in (select src_bfid
from migration
where src_bfid = file.bfid)
union
——Find duplication primary bfids. This includes multiple copies.
select file.bfid
from file,file_copies_map
where deleted = 'n'
and file.bfid = file_copies_map.bfid
" > /tmp/bfids_to_restore

Then loop over the bfids recreating the files.

cat /tmp/bfids_to_restore | while read line; do
echo $line;
enstore file —--restore $line —-force;

done > /tmp/file_rebuild log 2>&1

10.2 Rebuilding an Enstore DB from a PNFS
database

This direction of rebuild is more painful than the other way around. Deleted
files will not be able to be recovered. This will leave confusing gaps in tape
lists.

Warning: This documentation is untested, but should provide a
basis for performing this operation.

Restoring Enstore and PNFS databases 61

We need to obtain a list of all files in PNFS. This list may be able to be obtained from the
COMPLETE_FILE_LIST page from the Inventory Summary.

$ wget
http://www-stken.fnal.gov/enstore/tape inventory/COMPLETE FILE LISTING

or

$ find /pnfs/fs/usr -type f > COMPLETE_FILE_LISTING

Note: The column position of the file name will be in different depending on which method
was used. For the former, it is 8 and 1 one for latter.

$ for item in “cut -f [1 | 8]-d " " /tmp/COMPLETE FILE_SYSTEM ; do
layerd4="enstore pnfs —--layer $item 4°;
volume="echo "$layer4d" | sed -n 1lp ;
lc="echo "$layer4" | sed -n 2p°;
size="echo "$layer4d" | sed -n 3p’;
fname="echo "$layer4" | sed -n 5p°;
pnfsid="echo "$layer4d" | sed -n 7p ;
bfid="echo "$layer4" | sed -n 9p°;
drive="echo "$layerd4" | sed -n 10p ;
crc="echo "$layer4d" | sed -n 1llp";

uid="1s -1ln $item | awk '{print $3}'";

gid="1s -1ln $item | awk '{print $4'}";

sg="echo $fname | sed -e 's:/pnfs/fs/usr/::' -e 's:/pnfs/::' | txr /' '
' | awk '{print $1}'"
ff="echo "$layer4d" | sed -n 4p ;

#Make sure that we have valid information from layer 4.
if [-z "$volume"]; then continue; £i;

#Determine if volume has been added already.
grep $volume /tmp/vol_list
if [$? -eq 1]; then
#Add volume to DB.
enstore volume —--add $volume UNKNOWN $sg $ff UNKNOWN UNKNOWN
UNKNOWN ;
fi

#Add the file to the DB.

enstore file —--add $bfid pnfs_nameO=$fname complete_crc=$crc size=$size
pnsfid=$pnfsid deleted=n drive=$drive external_label=$volume
location_cookie=$1lc uid=$uid gid=$gid;
done

The values for the UNKNOWN volume fields above need to be corrected.
e For NULL volumes (which should be easy to identify from the volume name):
o library will be the null library from the configuration.
o wrapper will be 'null'".

62 Restoring Enstore and PNFS databases

file:///s:/pnfs
http://www-stken.fnal.gov/enstore/tape_inventory/COMPLETE_FILE_LISTING

o media_type will be 'null’

o capacity will be some large made up value.

For tape volumes:

o library will be matching library for the media type. The few “test” volumes
belonging to test libraries can be fixed later.

o The file locations will need to be evaluated to identify any cern wrapper tapes.
cpio_odc wrapped tapes write files to all locations, while cern wrapper wrapped
tapes skip locations where the file headers and footers are written. File sizes
larger than 8GB can only be written to cern wrapper volumes; this may provide a
clue for some volumes.

o For the media_type, a dump of volume information from the robots should
provide enough of a clue to set these values.

o Once the media_type is known, the capacity can be calculated.

For disk volumes (which should be easy to identify from the volume name):

o The library will be the disk library from the configuraiton.

o wrapper will be 'null'.

o media_type will be 'disk’

o capacity will need to be some made up value. The most correct thing to do
would be to base it on the size of the file system that the file is stored on.

Restoring Enstore and PNFS databases 63

Chapter 11: Metadata Scanning

A metadata scan audits the contents of the Chimera and Enstore databases.
The audit report is written to a natural-language text file and a separate
machine-parsable text file.

11.1 Definitions

A scan is done in one of two directions indicated below. Running a scan in
both directions is necessary in order to find all inconsistencies.

1. Forward scan: Walk through the Chimera namespace, check it for
errors, and compare the metadata with that in the file and volume
tables in the Enstore database.

2. Reverse scan: Walk through the Enstore database, check it for errors,
and compare it with the contents in the Chimera namespace.

A scan generates notices organized by file path. These can be informational,
warnings, errors, or critical errors.

11.2 Requirements

1. The scan is required be run with UID and GID 0, i.e. as root. Failing
this, an error will be reported and the scan will exit. This is necessary
to allow Chimera metadata files with restricted access to be read.

2. At most, only one instance of the scan can be run at a time. Failing
this, an error will be reported and the scan will exit. This is necessary
to prevent file-write conflicts and also a reduction in the scan's speed.

11.3 Recommendations

1. A full scan should not be run on a production system. Scanning a very
limited subset of the data should, however, be fine on a production
system. A full scan should be done on a non-production copy of the
databases from their recent backups.

2. Using backups implies a difference in the time at which each of the
two backups were created. This difference manifests itself as
discrepancies among the two databases. The discrepancies may lead to
some scan notices being falsely reported. It is therefore recommended
that this time difference be minimized.

3. A scan may print status updates to the stdout and stderror
streams. For a full scan, is recommended that these be saved to a

Metadata Scanning 64

temporary file.
4. Provisioning the databases, especially the Chimera database, on a SSD

is expected to boost scan speed relative to provisioning them on a
HDD.

11.4 Usage

The “enstore scan” command, with the appropriate command-line
options, starts a scan. The only required option is ——type. The following is
the usage information for each available option, expanded upon from what is
available at the command-line.

-h, --help
Show a help message, and exit.

-t SCAN TYPE, --type=SCAN_ TYPE

Start a scan of the specified type. This is a required option with no default
value. The specified value of SCAN_TYPE may be forward or reverse,
with the latter pending implementation.

-d FS ROOT, --directory=FS ROOT

For a forward scan, with FS_ROOT as an absolute directory path, scan the
directory recursively. The default is /pnfs/fs/usr. It is not recommended
to specify this option especially with large nested directories, as the scan
speed may then be lower than normal. It is not possible to specify multiple
unrelated directories or individual files to be scanned with a single command,
but this feature may be implemented in a future release.

-0 OUTPUT_FILE, --output file=OUTPUT FILE

Absolute path to the natural-language output file for notices. The default is
dynamic and is based on the current date and time, e.g.
/home/enstore/scan 20121203T164717.1og). The file is
appended if it exists. If the file exists and is to be overwritten instead, it must
be deleted before starting the scan. The machine-parsable output file is always
dynamic; it has the “.dict” extension appended, e.g.
/home/enstore/scan 20121203T164717.log.dict.

-p PRINT, --print=PRINT

For the specified scan type, print either a list of all checks and their overviews,
or a list of all notice -templates, and exit . Accordingly, PRINT may be
checks or notices. A scan is not run.

-r, --resume

65

Metadata Scanning

11.4.1

For the specified existing output file (as specified by ——output-£file),
resume the scan approximately where it was previously aborted. If this option
is not specified, if the output file exists, the scan is not resumed, but is
restarted instead. It is recommended that a scan be resumed with the same set
of databases only. The corresponding output files must not have been moved,
failing which its checkpoint will be deleted and the scan cannot then be
resumed. Checkpoints older than 60 days are also deleted.

-s STATUS_ INTERVAL,
--status_interval=STATUS INTERVAL

Maximum interval in seconds between successive status output updates to
stdout. The default is increased gradually from 1 up to 600 and is
maintained at this number. A final status update is also printed at the
completion of the scan.

Usage examples

enstore scan -t forward
This command starts the full forward scan for /pnfs/fs/usr. The notices
output file path, along with periodic status updates are printed to stdout.

enstore scan -t forward -p notices
This command prints a list of all possible notice types that may generated by a
forward scan, and exits. A scan is not run.

enstore scan -t forward -o scan 20121203T164717.1log
-r

This command resumes a previously aborted forward scan which used the
noted output file. Assuming the output file and its checkpoint exist, the scan
will be resumed approximately at where it was previously aborted.

enstore scan -t forward -d /pnfs/fs/usr/foo/bar
This command performs a forward scan limited to the specified directory and
its sub-directories recursively.

11.5 Status output

The periodic status output, as printed to stdout, may resemble:

[root@stkenscanl ~]# enstore scan -t forward

The scan notices output files are

"/root/scan 20121221T134118.1log" and

"/root/scan 20121221T134118.log.dict". These files

Metadata Scanning 66

do not exist and will be created.

2012-12-21 13:41:22

Active workers : 12

Time elapsed : 0:00:00
Items scanned (cumulative) : 0

Speed (cumulative) (items/s): 0

Speed (current) (items/s) : 0
Items remaining : 15,926,335
Time to next update : 0:00:01

2012-12-21 13:41:23

Active workers : 12

Time elapsed : 0:00:01

Items scanned (cumulative) : 48

Speed (cumulative) (items/s): 45

Speed (current) (items/s) 47

Items remaining 15,926,287

Time remaining 4 days, 0:49:31
Time total 4 days, 0:49:32
Time to next update 0:00:03

The estimate of the time remaining is computed by dividing the number of
items remaining by the cumulative speed of the items scanned. For a full scan,
this estimate takes a few iterations to stabilize.

The number of active workers is a multiple of the number of CPU cores. If
this number of active workers falls to below its initial peak, an error may have
occurred and printed to stderr. While no such error is known to exist, if one
does occur, it is to be investigated. If the number of active workers drops to 0,
the scan should be aborted as it will never complete.

11.6 Notices output

Logged notices are organized by filesystem object (files, directories, etc.)
path. Filesystem objects without any notices are not logged. In other words,
each logged filesystem object has one or more associated notices.

Each notice has a level, which can be one of INFO, WARNING, ERROR, or
CRITICAL. While an INFO notice may not be a concern in itself, it may help

in the understanding of any co-occurring non-INFO notices.

Each notice also has a code. Examples of these are CRCNone, MarkedDel,

67

Metadata Scanning

11.6.1

Structure

Examples

and PathMismatch. Notice codes and descriptions are specific to the
current scan type. For forward scan, a list is available with the “-t
forward -p notices” options. Depending upon the notice code, its
associated natural language description may be generated dynamically.

Some notices may not be detected and logged until the existing notices for the
file are mitigated and a scan is repeated.

Natural language notices output

The natural language log is meant to be human readable. As such, it is not
meant for use by any automated mitigation method.

Entries have the format:
<filesystem object path>
<notice 1 line>

<notice 2 line> (as applicable)

<empty line>

Each notice line has the format:
<level> (<code>): <description>

Examples of successively logged entries are:

/pnfs/fs/usr/beamstool/DocDB/BeamDocDB-2003-12-06
WARNING (CRCNone): CRC is missing in both layer 4
and Enstore file info.

ERROR (PathMismatch): File path mismatch. Normalized
file paths for file with layer 1 BFID
"CDMS144999398900000" provided by Enstore and layer
4 (/<pnfs>/beamstool/DocDB/BeamDocDB-2004-01-05);
and filesystem
(/<pnfs>/beamstool/DocDB/BeamDocDB-2003-12-06) don't
all match. File may have been moved.

/pnfs/fs/usr/beamstool/SBDAWS/V_1 36 filling
ERROR (SizeOFileInfoOk): File is empty. Its lstat
size is 0 and its layer 2 size is not present. Its
info in Enstore is ok.

ERROR (FileInfoDelNone): The "deleted" field is

Metadata Scanning 68

missing in Enstore file info.

11.6.2 Machine parsable notices output

Entries in the machine parsable log are organized in the same manner as the
natural language log, but are formatted as Unicode string representations of
Python dict objects, with one on each line.

It is not possible to write the entire log meaningfully with a standard set of
comma-separated values (CSV) because the needed fields vary greatly in each
line. In particular, the notices logged in each line can vary, and the notice
arguments vary by notice code as well.

Structure

The dict in each line has the items:
path: <path>
notices: <notices dict>

The notices dict in each line has the items:
<notice code 1>: <notice dict>
<notice code 2>: <notice dict> (as applicable)

Each notice dict has the items:
level: <level>
args: <args dict>

Each args dict has the items:
<arg 1>: <value> (as applicable)
<arg 2>: <value> (as applicable)

A notice code can be expected to always have the same set of args keys,
with differing values. For example, the notice code PathMismatch can be
expected to have the args keys path filesystem, path layer4,
path enstore,and bfid layerl.

Examples
Examples of successively logged entries are:
{u'notices': {u'CRCNone': {u'args': {}, u'level':

U'WARNING'}, u'PathMismatch': {u'args':

69 Metadata Scanning

{u'path_enstore':
u'/<pnfs>/beamstool/DocDB/BeamDocDB-2004-01-05",
u'bfid layerl': 'CDMS144999398900000',

u'path layerd':
u'/<pnfs>/beamstool/DocDB/BeamDocDB-2004-01-05",
u'path filesystem':
u'/<pnfs>/beamstool/DocDB/BeamDocDB-2003-12-06"},
u'level': u'ERROR'}}, u'path':
u'/pnfs/fs/usr/beamstool/DocDB/BeamDocDB-2003-12-06"
}

{u'notices': {u'FileInfoDelNone': {u'args': {},
u'level': u'ERROR'}, u'SizeOFileInfoOk': {u'args':
{u'layer2 size': u'not present'}, u'level':
u'ERROR'}}, u'path':

u'/pnfs/fs/usr/beamstool/SBDAWS/V_1 36 filling'}

The prefix “u” at the start of each string indicates Unicode.

Usage example

Python can be used to process the log file and provide the required output. For
example, the layer 1 BFID, filesystem path, and Enstore path of all
PathMismatch notices can be printed to stdout in a tab-separated format.

The following sample Python code can be used:

#!/usr/bin/env python

import ast

file in = 'scan 20121218T140215.log.dict"

notice reqd = 'PathMismatch'

Metadata Scanning 70

args reqd = ('bfid layerl',
'path filesystem',

'path _enstore',)

for line in open(file in):
record = ast.literal eval(line)
notices = record['notices']
if notice reqd in notices:
args = notices['PathMismatch']['args']
args = [args[arg] for arg in args reqd]
output = '\t'.join(args)

print (output)

11.7 Mitigation (link)

To mitigate the logged notices, refer to the pertinent section in the resource
linked below:

http://www-ccf.fnal.eov/PNFS Scan.pdf

71 Metadata Scanning

http://www-ccf.fnal.gov/PNFS_Scan.pdf

Alphabetical Index

A
accounting_db crontab...........c.cccccvviereennn. 14
B
backup crontab...........ccccevviiiriiiiniiiieeinnnn, 14
backup2Tape cronjob........cccceceeeveeneeennne. 15
backup2Tape crontab............cceeveuvvveeernnnnns 15
C
check_db.py cronjob..........ccoccveeeviiiieeannnns 15
check_for_traceback cronjob..................... 24
checkdb crontab.........cccccoceeviiiiniiiinnneeen. 15
checkPNES cronjob..........ccccoeviiieieennnnnne. 15
checkPNEFS crontab..........ccccccevvvviieeennnns 15
chkcrons crontab...........ccceeeeveeeriiiieeeeennne. 16
chkcrons.py cronjob..........ccocceevveeveeennneen. 16
cleaning_report cronjob...........cccccveeenneeen. 22
Configuration File........cccccccevvviiiniieneennnn. 39
copy_ran_file cronjob...........ccccccvvveeernnnnne. 16
copy_ran_file crontab..............ccceeeeernnnne 16
Cronjobs.......cccvevieenieeieeee 14
cross-reference data for file;data file.............
cross-reference information.................. 49
D
data file......cceeeeeiiiiieeee e
get BFID.....oooiiiiiii 45
get filesize......oovveeivniiiiiiiiiieeeee, 46
get layer-related info....................... 45, 47
list active ones per volume.............. 35,52
list cross-ref info............ccoovvueeeeeennn 46,49
list per volume.......c.cccocvveeieenienieennnen. 54
list per volume;........cccovevveenveennnnnenn. 35, 51
db_backup.py accounting cronjob............. 14
db_backup.py drive_stat cronjob............... 14
db_vacuum.py cronjob...........cccoceeiniieannns 14
db_vacuum.py drivestat cronjob................ 18
db_vacuum.py enstoredb cronjob.............. 18
dCache.....cccuvveeeeiiieeee e
get data file info........ccoeveeiniinninns 47
delfile crontab...........ccceevviieiiinniiiiiiinnee, 17
delfile.py cronjob.......cccccceceeeveeeviieeennneens 17
drives_info cronjob.........ccceceeeeciveeeeeennen. 17
drives_info crontab.........cccoeevveeeeviennnneeennn. 17
drivestat_db crontab............ccccccvueeeeeerinnnn. 18

E

enstore alarm command..............cccceeeunnnn... 58
enstore architeCture...........ooevvuvvvvvvvevnnnnnnnnn. 10
enstore backup command..............cceceeee. 60
enstore backup cronjob...........ccceccvveernnenn. 18
enstore configuration command................. 60
enstore event_relay command.................... 63
enstore file command.......................oooee. 63
enstore info command..............ccccoeeveeeennnen. 70
enstore inquisitor command....................... 74
Enstore Installation...............ccccvvvveennnnnnnn. 14
enstore library command.............ccccceeueenee. 79
enstore log command............ccocuveeeernnnne 81
enstore media command....................euee... 83
enstore monitor command.......................... 86
enstore mover command.............ccccuvennnnn. 87
enstore network command.............ccceuun..... 91
enstore network cronjob............coceeeeeeee. 19
enstore pnfs command............ccccceeeennneen. 91
enstore pnfs_agent command................... 100
enstore quota command..............ccceeennne. 101
enstore ratekeeper command.................... 102
enstore restart command.......................... 103
enstore scan command...............ccceeeennnn... 103
enstore start command..............ccceeeeennnnn.. 104
enstore stop command............c.ceeeuveeennen. 105
enstore system command......................... 106
enstore system cronjob..........cccccceeveeeueennne. 19
enstore up_down command..................... 106
enstore volume command...........ccccc........ 107
enstore_db crontab...........oceveeeeiiiiiieriennnn. 18
enstore_html crontab.........ccccceveveueerennnnnn... 18
enstore_plots crontab...........cccooeiiieeernnnnne 19
enstore_system_html.py cronjob............... 19
G

get_total_bytes_counter.py cronjob........... 19
getnodeinfo cronjob..........cceceeeiiiieeniieene 23
I

inventory crontab...........cccoeceeeiiiniiiiieeennns 21
inventory_web crontab............ccceeeveeennnenn. 22
INVeNtory.py Cronjob.......cccveevveeeriuvvreeeennnns 21

L

log_html crontab.........ccccceervieeiiniiiiernennns 23

log_server crontab............cccoceeeviiiiniiiannnns 23
log_trans_fail.py month cronjob................ 23
log-stash cronjob..........ccccovcveeeviiiniiieennnnns 23
M
make_cron_plot_page cronjob................... 19
make_ingest_rates_html_page.p cronjoby.19
make_quota_plot_page cronjob................. 19
make_sg_plot cronjob..........cccceceenieeennnn. 20
metadata........cooeerieenieniiece e
get for given data file............. 29, 46, 49p.
N
N0AacCess-tapes Cronjob.........ccecveervuveennnneen. 22
P
plotter_main.py --encp_ratet_multi cronjob
.. 20
plotter_main.py --file-family-analysis
CIONJOD.ccnetiiiiiiiiiee e 20
plotter_main.py --migration-summary....... 21
plotter_main.py --mount cronjob............... 19
plotter_main.py --pnfs-backup cronjob.....21
plotter_main.py --quotas cronjob............... 20
plotter_main.py --rate cronjob................... 19
plotter_main.py --slots cronjob.................. 20
plotter_main.py --utilization cronjob......... 20
plotter.py --encp cronjob........c.c.cccceeueenenee. 19
plotter.py --mount cronjob......................... 19
plotter.py --total_bytes cronjob.................. 21
PIES e
list tags of directory........cceeevveerveeennnnenn. 48
PNFS ., 29
PNfS dIrECtOTY.couevieeiiieeiiieiieeieee e
get file family ofcccceeiiinininne, 46
get file family width of.......................... 46
get file family wrapper of.................... 46

get library tag for;library manager (LM). .
find for given pnfs dir............c........ 49

pnfs_misc crontab...........ccceeveeeeeniiiieeeennn. 24
pnfs_monitor cronjob..........cceeeeerieeneeennee 24
PnfsExports cronjob..........ccoceeevieiiiieeennns 24
PYthON. ..ot 39
Q
QUEUC. ..ttt ettt et e et e e
print queue per encp client host............ 42
quota_alert cronjob..........cccceevviiiiiiiinnnnne. 22
R
rdist-10g Cronjob.......ceevvveieriiieeiiieeieeeene 24
TEQUESES. c.nveeiteenieeeiieeeee st ettt e e et e et eenaeeee s
print list of pending by library;requests....
print list of active by library............. 43
S
STKIOZ cronjob........ceeevveeerieeeniieeieeenns 23
storage volume...........coovveeenieiinieeiiiiieeeeenns
list active files......ccocueeernieeiniiieinieeenes 54
list allocated tape counts................. 36, 55
list available space;storage volume...........
list inhibits;storage volume:list file
family info...........cc......... 37, 40, 52, 57
list files ON......covvuveiriiiiiiiiiice 54
list files on;data file............ooovveeeeeriiinnnnnnnn.
list per volume...........cccceevuuneeen.. 35, 51
list problem volumes....................... 36, 56
print asserts per library.........cccccccoeueeee. 41
STALISTICS..eevvvvreeeeeeiieeeeinneees 34, 39, 54, 57
SUSPECt VOIUMES.eeviiiiaiiieniiieeeiiieeee e
print list per library........cccccoevvieenieennne. 42
T
I U SPP PSSR 35
TagS i 38
v
VoIS Cronjob.......ccocueerierieeniiieeniceeeee 22
w
weekly_summary_report.py cronjob......... 21

	Chapter 1: Enstore Overview
	1.1 Introduction
	1.2 Enstore architecture
	1.3 Enstore hardware requirements and configuration
	1.3.1 Hosts
	1.3.2 Additional storage
	1.3.3 Network switch
	1.3.4 System Configuration

	Chapter 2: Enstore Installation
	2.1 Introduction
	2.1.1 Remote access
	2.1.2 Licensing
	2.1.3 Enstore rpm
	2.1.4 Installing Enstore.
	2.1.4.1 Installing postgreSQL DBMS.
	2.1.4.2 Minimal installation (mover node)
	2.1.4.3 Complete installation (server node)
	2.1.4.4 Additional packages for Small Files Aggregation

	2.1.5 Configuring Enstore
	2.1.5.1 Note about .bashrc and .bash_profile.
	2.1.5.2 Run-time environment.
	2.1.5.2.1 Head node
	2.1.5.2.2 Enstore configuration file.
	2.1.5.2.3 Regular node

	2.1.5.3 Farmlets
	2.1.5.4 Name Space
	2.1.5.4.1 Installation.
	2.1.5.4.2 Namespace (pnfs) tags.
	Namespace (pnfs) tags.
	Tag listing
	Viewing tags
	Setting tags

	2.1.6 Finishing installation and configuration
	2.1.6.1 Enstore web site
	2.1.6.2 Enstore databases
	2.1.6.3 Enstore cron jobs

	2.1.7 Starting, restarting and stopping enstore
	2.1.8 What next?

	Chapter 3: Enstore Commands
	3.1 enstore info
	3.2 enstore library
	3.3 enstore monitor
	3.4 enstore pnfs
	3.5 enstore file (deprecated)
	3.6 enstore volume (deprecated)

	Chapter 4: Enstore Administrator Commands
	4.1 enstore alarm
	4.2 enstore backup
	4.3 enstore configuration
	4.4 enstore event_relay
	4.5 enstore file
	4.6 enstore info
	4.7 enstore inquisitor
	4.8 enstore library
	4.9 enstore log
	4.10 enstore media
	4.11 enstore monitor
	4.12 enstore mover
	4.13 enstore network
	4.14 enstore pnfs
	4.15 enstore pnfs_agent
	4.16 enstore quota
	4.17 enstore ratekeeper
	4.18 enstore restart
	4.19 enstore scan
	4.20 enstore schedule
	4.21 enstore start
	4.22 enstore stop
	4.23 enstore system
	4.24 enstore up_down
	4.25 enstore volume

	Chapter 5: Migration and Duplication
	5.1 Preparation
	5.2 Migration
	5.2.1 Reasons for migration
	5.2.2 Migration command
	5.2.3 Migration file_family mangling

	5.3 Duplication
	5.3.1 Reasons for duplication
	5.3.2 Duplication command
	5.3.3 Duplication file_family mangling

	5.4 Swapping metadata
	5.4.1 make_original_as_duplicate.py
	5.4.2 make_migrated_as_duplicate.py
	5.4.3 swap_original_and_copy.py

	Chapter 6: Cronjobs
	6.1 accounting_db
	6.1.1 db_vacuum.py

	6.2 backup
	6.2.1 db_backup.py accounting
	6.2.2 db_backup.py drive_stat

	6.3 backup2Tape
	6.3.1 backup2Tape
	6.3.2 backupSystem2Tape

	6.4 checkdb
	6.4.1 check_db.py

	6.5 checkPNFS
	6.5.1 checkPNFS

	6.6 chkcrons
	6.6.1 chkcrons.py

	6.7 copy_ran_file
	6.7.1 copy_ran_file

	6.8 delfile
	6.8.1 delfile.py

	6.9 drives_info
	6.9.1 drives_info

	6.10 drivestat_db
	6.10.1 db_vacuum.py drivestat

	6.11 enstore_db
	6.11.1 db_vacuum.py enstoredb
	6.11.2 enstore backup

	6.12 enstore_html
	6.12.1 enstore_system_html.py
	6.12.2 make_quota_plot_page
	6.12.3 make_cron_plot_page
	6.12.4 make_ingest_rates_html_page.py
	6.12.5 enstore system
	6.12.6 enstore network
	6.12.7 get_total_bytes_counter.py

	6.13 enstore_plots
	6.13.1 plotter.py --encp
	6.13.2 plotter.py --mount
	6.13.3 plotter_main.py [-m | --mount]
	6.13.4 plotter_main.py [-r | --rate]
	6.13.5 plotter_main.py [-u | --utilization]
	6.13.6 plotter_main.py [-s | --slots]
	6.13.7 make_sg_plot
	6.13.8 plotter_main.py [-e | --encp-rate-multi]
	6.13.9 plotter_main.py [-f | --file-family-analysis.py]
	6.13.10 plotter_main.py [-q | --quotas]
	6.13.11 plotter_main.py [-p | --pnfs-backup]
	6.13.12 plotter.py --total_bytes --pts_nodes=d0ensrv2,stkensrv2,cdfensrv2 –no-plot-html
	6.13.13 plotter_main.py [-i | --migration-summary]
	6.13.14 weekly_summary_report.py
	6.13.15 plotter_main.py [-t | --tapes-burn-rate]

	6.14 inventory
	6.14.1 inventory.py

	6.15 inventory_web
	6.15.1 cleaning_report
	6.15.2 noaccess-tapes
	6.15.3 Vols
	6.15.4 quota_alert

	6.16 log_html
	6.16.1 getnodeinfo
	6.16.2 log_trans_fail
	6.16.3 STKlog

	6.17 log_server
	6.17.1 log-stash
	6.17.2 check_for_traceback
	6.17.3 rdist-log

	6.18 pnfs_misc
	6.18.1 PnfsExports
	6.18.2 pnfs_monitor

	Chapter 7: ecron
	7.1 Switches
	7.2 Files
	7.3 Samples
	7.4 Troubleshooting

	Chapter 8: PNFS Maintenance
	8.1 Adding a new PNFS Database
	8.2 Giving Systems Access to PNFS
	8.2.1 Using pmount (1st method)
	8.2.2 Using UNIX tools (2nd method)
	8.2.3 Trusted PNFS Nodes

	8.3 Removing Invalid Directory Entries
	8.3.1 To remove them (1st method):
	8.3.2 To remove them (2nd method):
	8.3.3 To remove them (3rd method):

	8.4 Restoring Tag Inheritance
	8.5 Fixing Broken Tags

	Chapter 9: Configuration File
	9.1 Configuration Descripton
	9.2 Useful Shortcuts and Variables
	9.3 Non-server Entries
	9.3.1 blocksizes
	9.3.2 crons
	9.3.3 crontabs
	9.3.4 database
	9.3.5 discipline
	9.3.6 encp
	9.3.7 inventory
	9.3.8 priority
	9.3.9 wrappersizes
	9.3.10 web_server

	9.4 Server Entries
	9.4.1 alarm_server
	9.4.2 event_relay
	9.4.3 log_server
	9.4.4 file_clerk
	9.4.5 volume_clerk
	9.4.6 info_server
	9.4.7 pnfs_agent
	9.4.8 monitor_server
	9.4.9 ratekeeper
	9.4.10 library_manager
	9.4.11 mover
	9.4.12 media_changer

	Chapter 10: Restoring Enstore and PNFS databases
	10.1 Rebuilding a PNFS database from an Enstore Database
	10.2 Rebuilding an Enstore DB from a PNFS database

	Chapter 11: Metadata Scanning
	11.1 Definitions
	11.2 Requirements
	11.3 Recommendations
	11.4 Usage
	11.4.1 Usage examples

	11.5 Status output
	11.6 Notices output
	11.6.1 Natural language notices output
	Structure
	Examples

	11.6.2 Machine parsable notices output
	Structure
	Examples
	Usage example

	11.7 Mitigation (link)

